| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112 | /* * Copyright Nick Thompson, 2019 * Use, modification and distribution are subject to the * Boost Software License, Version 1.0. (See accompanying file * LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) */#ifndef BOOST_MATH_STATISTICS_ANDERSON_DARLING_HPP#define BOOST_MATH_STATISTICS_ANDERSON_DARLING_HPP#include <cmath>#include <algorithm>#include <boost/math/statistics/univariate_statistics.hpp>#include <boost/math/special_functions/erf.hpp>namespace boost { namespace math { namespace statistics {template<class RandomAccessContainer>auto anderson_darling_normality_statistic(RandomAccessContainer const & v,                                          typename RandomAccessContainer::value_type mu = std::numeric_limits<typename RandomAccessContainer::value_type>::quiet_NaN(),                                          typename RandomAccessContainer::value_type sd = std::numeric_limits<typename RandomAccessContainer::value_type>::quiet_NaN()){    using Real = typename RandomAccessContainer::value_type;    using std::log;    using std::sqrt;    using boost::math::erfc;    if (std::isnan(mu)) {        mu = boost::math::statistics::mean(v);    }    if (std::isnan(sd)) {        sd = sqrt(boost::math::statistics::sample_variance(v));    }    typedef boost::math::policies::policy<          boost::math::policies::promote_float<false>,          boost::math::policies::promote_double<false> >          no_promote_policy;    // This is where Knuth's literate programming could really come in handy!    // I need some LaTeX. The idea is that before any observation, the ecdf is identically zero.    // So we need to compute:    // \int_{-\infty}^{v_0} \frac{F(x)F'(x)}{1- F(x)} \, \mathrm{d}x, where F(x) := \frac{1}{2}[1+\erf(\frac{x-\mu}{\sigma \sqrt{2}})]    // Astonishingly, there is an analytic evaluation to this integral, as you can validate with the following Mathematica command:    // Integrate[(1/2 (1 + Erf[(x - mu)/Sqrt[2*sigma^2]])*Exp[-(x - mu)^2/(2*sigma^2)]*1/Sqrt[2*\[Pi]*sigma^2])/(1 - 1/2 (1 + Erf[(x - mu)/Sqrt[2*sigma^2]])),    // {x, -Infinity, x0}, Assumptions -> {x0 \[Element] Reals && mu \[Element] Reals && sigma > 0}]    // This gives (for s = x-mu/sqrt(2sigma^2))    // -1/2 + erf(s) + log(2/(1+erf(s)))    Real inv_var_scale = 1/(sd*sqrt(Real(2)));    Real s0 = (v[0] - mu)*inv_var_scale;    Real erfcs0 = erfc(s0, no_promote_policy());    // Note that if erfcs0 == 0, then left_tail = inf (numerically), and hence the entire integral is numerically infinite:    if (erfcs0 <= 0) {        return std::numeric_limits<Real>::infinity();    }    // Note that we're going to add erfcs0/2 when we compute the integral over [x_0, x_1], so drop it here:    Real left_tail = -1 + log(Real(2));    // For the right tail, the ecdf is identically 1.    // Hence we need the integral:    // \int_{v_{n-1}}^{\infty} \frac{(1-F(x))F'(x)}{F(x)} \, \mathrm{d}x    // This also has an analytic evaluation! It can be found via the following Mathematica command:    // Integrate[(E^(-(z^2/2)) *(1 - 1/2 (1 + Erf[z/Sqrt[2]])))/(Sqrt[2 \[Pi]] (1/2 (1 + Erf[z/Sqrt[2]]))),    // {z, zn, \[Infinity]}, Assumptions -> {zn \[Element] Reals && mu \[Element] Reals}]    // This gives (for sf = xf-mu/sqrt(2sigma^2))    // -1/2 + erf(sf)/2 + 2log(2/(1+erf(sf)))    Real sf = (v[v.size()-1] - mu)*inv_var_scale;    //Real erfcsf = erfc<Real>(sf, no_promote_policy());    // This is the actual value of the tail integral. However, the -erfcsf/2 cancels from the integral over [v_{n-2}, v_{n-1}]:    //Real right_tail = -erfcsf/2 + log(Real(2)) - log(2-erfcsf);    // Use erfc(-x) = 2 - erfc(x)    Real erfcmsf = erfc<Real>(-sf, no_promote_policy());    // Again if this is precisely zero then the integral is numerically infinite:    if (erfcmsf == 0) {        return std::numeric_limits<Real>::infinity();    }    Real right_tail = log(2/erfcmsf);    // Now we need each integral:    // \int_{v_i}^{v_{i+1}} \frac{(i+1/n - F(x))^2F'(x)}{F(x)(1-F(x))}  \, \mathrm{d}x    // Again we get an analytical evaluation via the following Mathematica command:    // Integrate[((E^(-(z^2/2))/Sqrt[2 \[Pi]])*(k1 - F[z])^2)/(F[z]*(1 - F[z])),    // {z, z1, z2}, Assumptions -> {z1 \[Element] Reals && z2 \[Element] Reals &&k1 \[Element] Reals}] // FullSimplify    Real integrals = 0;    int64_t N = v.size();    for (int64_t i = 0; i < N - 1; ++i) {        if (v[i] > v[i+1]) {            throw std::domain_error("Input data must be sorted in increasing order v[0] <= v[1] <= . . .  <= v[n-1]");        }        Real k = (i+1)/Real(N);        Real s1 = (v[i+1]-mu)*inv_var_scale;        Real erfcs1 = erfc<Real>(s1, no_promote_policy());        Real term = k*(k*log(erfcs0*(-2 + erfcs1)/(erfcs1*(-2 + erfcs0))) + 2*log(erfcs1/erfcs0));        integrals += term;        s0 = s1;        erfcs0 = erfcs1;    }    integrals -= log(erfcs0);    return v.size()*(left_tail + right_tail + integrals);}}}}#endif
 |