| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869 | //  (C) Copyright Nick Thompson 2019.//  Use, modification and distribution are subject to the//  Boost Software License, Version 1.0. (See accompanying file//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)#ifndef BOOST_MATH_SPECIAL_JACOBI_HPP#define BOOST_MATH_SPECIAL_JACOBI_HPP#include <limits>#include <stdexcept>namespace boost { namespace math {template<typename Real>Real jacobi(unsigned n, Real alpha, Real beta, Real x){    static_assert(!std::is_integral<Real>::value, "Jacobi polynomials do not work with integer arguments.");    if (n == 0) {        return Real(1);    }    Real y0 = 1;    Real y1 = (alpha+1) + (alpha+beta+2)*(x-1)/Real(2);    Real yk = y1;    Real k = 2;    Real k_max = n*(1+std::numeric_limits<Real>::epsilon());    while(k < k_max)    {        // Hoping for lots of common subexpression elimination by the compiler:        Real denom = 2*k*(k+alpha+beta)*(2*k+alpha+beta-2);        Real gamma1 = (2*k+alpha+beta-1)*( (2*k+alpha+beta)*(2*k+alpha+beta-2)*x + alpha*alpha -beta*beta);        Real gamma0 = -2*(k+alpha-1)*(k+beta-1)*(2*k+alpha+beta);        yk = (gamma1*y1 + gamma0*y0)/denom;        y0 = y1;        y1 = yk;        k += 1;    }    return yk;}template<typename Real>Real jacobi_derivative(unsigned n, Real alpha, Real beta, Real x, unsigned k){    if (k > n) {        return Real(0);    }    Real scale = 1;    for(unsigned j = 1; j <= k; ++j) {        scale *= (alpha + beta + n + j)/2;    }    return scale*jacobi<Real>(n-k, alpha + k, beta+k, x);}template<typename Real>Real jacobi_prime(unsigned n, Real alpha, Real beta, Real x){    return jacobi_derivative<Real>(n, alpha, beta, x, 1);}template<typename Real>Real jacobi_double_prime(unsigned n, Real alpha, Real beta, Real x){    return jacobi_derivative<Real>(n, alpha, beta, x, 2);}}}#endif
 |