| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166 | /* [auto_generated] boost/numeric/odeint/stepper/euler.hpp [begin_description] Implementation of the classical explicit Euler stepper. This method is really simple and should only be used for demonstration purposes. [end_description] Copyright 2010-2013 Karsten Ahnert Copyright 2010-2013 Mario Mulansky Distributed under the Boost Software License, Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt) */#ifndef BOOST_NUMERIC_ODEINT_STEPPER_EULER_HPP_INCLUDED#define BOOST_NUMERIC_ODEINT_STEPPER_EULER_HPP_INCLUDED#include <boost/numeric/odeint/stepper/base/explicit_stepper_base.hpp>#include <boost/numeric/odeint/util/resizer.hpp>#include <boost/numeric/odeint/algebra/range_algebra.hpp>#include <boost/numeric/odeint/algebra/default_operations.hpp>#include <boost/numeric/odeint/algebra/algebra_dispatcher.hpp>#include <boost/numeric/odeint/algebra/operations_dispatcher.hpp>namespace boost {namespace numeric {namespace odeint {template<class State ,class Value = double ,class Deriv = State ,class Time = Value ,class Algebra = typename algebra_dispatcher< State >::algebra_type ,class Operations = typename operations_dispatcher< State >::operations_type ,class Resizer = initially_resizer>#ifndef DOXYGEN_SKIPclass euler: public explicit_stepper_base<  euler< State , Value , Deriv , Time , Algebra , Operations , Resizer > ,  1 , State , Value , Deriv , Time , Algebra , Operations , Resizer >#elseclass euler : public explicit_stepper_base#endif{public :    #ifndef DOXYGEN_SKIP    typedef explicit_stepper_base< euler< State , Value , Deriv , Time , Algebra , Operations , Resizer > , 1 , State , Value , Deriv , Time , Algebra , Operations , Resizer > stepper_base_type;    #else    typedef explicit_stepper_base< euler< ... > , ... > stepper_base_type;    #endif    typedef typename stepper_base_type::state_type state_type;    typedef typename stepper_base_type::value_type value_type;    typedef typename stepper_base_type::deriv_type deriv_type;    typedef typename stepper_base_type::time_type time_type;    typedef typename stepper_base_type::algebra_type algebra_type;    typedef typename stepper_base_type::operations_type operations_type;    typedef typename stepper_base_type::resizer_type resizer_type;    #ifndef DOXYGEN_SKIP    typedef typename stepper_base_type::stepper_type stepper_type;    typedef typename stepper_base_type::wrapped_state_type wrapped_state_type;    typedef typename stepper_base_type::wrapped_deriv_type wrapped_deriv_type;    #endif     euler( const algebra_type &algebra = algebra_type() ) : stepper_base_type( algebra )    { }    template< class System , class StateIn , class DerivIn , class StateOut >    void do_step_impl( System /* system */ , const StateIn &in , const DerivIn &dxdt , time_type /* t */ , StateOut &out , time_type dt )    {        stepper_base_type::m_algebra.for_each3( out , in , dxdt ,                typename operations_type::template scale_sum2< value_type , time_type >( 1.0 , dt ) );    }    template< class StateOut , class StateIn1 , class StateIn2 >    void calc_state( StateOut &x , time_type t ,  const StateIn1 &old_state , time_type t_old , const StateIn2 & /*current_state*/ , time_type /* t_new */ ) const    {        const time_type delta = t - t_old;        stepper_base_type::m_algebra.for_each3( x , old_state , stepper_base_type::m_dxdt.m_v ,                typename operations_type::template scale_sum2< value_type , time_type >( 1.0 , delta ) );    }    template< class StateType >    void adjust_size( const StateType &x )    {        stepper_base_type::adjust_size( x );    }};/********** DOXYGEN ***********//** * \class euler * \brief An implementation of the Euler method. * * The Euler method is a very simply solver for ordinary differential equations. This method should not be used * for real applications. It is only useful for demonstration purposes. Step size control is not provided but * trivial continuous output is available. *  * This class derives from explicit_stepper_base and inherits its interface via CRTP (current recurring template pattern), * see explicit_stepper_base * * \tparam State The state type. * \tparam Value The value type. * \tparam Deriv The type representing the time derivative of the state. * \tparam Time The time representing the independent variable - the time. * \tparam Algebra The algebra type. * \tparam Operations The operations type. * \tparam Resizer The resizer policy type. */    /**     * \fn euler::euler( const algebra_type &algebra )     * \brief Constructs the euler class. This constructor can be used as a default     * constructor of the algebra has a default constructor.     * \param algebra A copy of algebra is made and stored inside explicit_stepper_base.     */        /**     * \fn euler::do_step_impl( System system , const StateIn &in , const DerivIn &dxdt , time_type t , StateOut &out , time_type dt )     * \brief This method performs one step. The derivative `dxdt` of `in` at the time `t` is passed to the method.     * The result is updated out of place, hence the input is in `in` and the output in `out`.     * Access to this step functionality is provided by explicit_stepper_base and      * `do_step_impl` should not be called directly.     *     * \param system The system function to solve, hence the r.h.s. of the ODE. It must fulfill the     *               Simple System concept.     * \param in The state of the ODE which should be solved. in is not modified in this method     * \param dxdt The derivative of x at t.     * \param t The value of the time, at which the step should be performed.     * \param out The result of the step is written in out.     * \param dt The step size.     */    /**     * \fn euler::calc_state( StateOut &x , time_type t ,  const StateIn1 &old_state , time_type t_old , const StateIn2 ¤t_state , time_type t_new ) const     * \brief This method is used for continuous output and it calculates the state `x` at a time `t` from the      * knowledge of two states `old_state` and `current_state` at time points `t_old` and `t_new`.     */    /**     * \fn euler::adjust_size( const StateType &x )     * \brief Adjust the size of all temporaries in the stepper manually.     * \param x A state from which the size of the temporaries to be resized is deduced.     */} // odeint} // numeric} // boost#endif // BOOST_NUMERIC_ODEINT_STEPPER_EULER_HPP_INCLUDED
 |