| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306 | // Boost.Geometry - gis-projections (based on PROJ4)// Copyright (c) 2008-2015 Barend Gehrels, Amsterdam, the Netherlands.// This file was modified by Oracle on 2017, 2018, 2019.// Modifications copyright (c) 2017-2019, Oracle and/or its affiliates.// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle.// Use, modification and distribution is subject to the Boost Software License,// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at// http://www.boost.org/LICENSE_1_0.txt)// This file is converted from PROJ4, http://trac.osgeo.org/proj// PROJ4 is originally written by Gerald Evenden (then of the USGS)// PROJ4 is maintained by Frank Warmerdam// PROJ4 is converted to Boost.Geometry by Barend Gehrels// Last updated version of proj: 5.0.0// Original copyright notice:// Purpose:  Implementation of the aitoff (Aitoff) and wintri (Winkel Tripel)//           projections.// Author:   Gerald Evenden (1995)//           Drazen Tutic, Lovro Gradiser (2015) - add inverse//           Thomas Knudsen (2016) - revise/add regression tests// Copyright (c) 1995, Gerald Evenden// Permission is hereby granted, free of charge, to any person obtaining a// copy of this software and associated documentation files (the "Software"),// to deal in the Software without restriction, including without limitation// the rights to use, copy, modify, merge, publish, distribute, sublicense,// and/or sell copies of the Software, and to permit persons to whom the// Software is furnished to do so, subject to the following conditions:// The above copyright notice and this permission notice shall be included// in all copies or substantial portions of the Software.// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER// DEALINGS IN THE SOFTWARE.#ifndef BOOST_GEOMETRY_PROJECTIONS_AITOFF_HPP#define BOOST_GEOMETRY_PROJECTIONS_AITOFF_HPP#include <boost/core/ignore_unused.hpp>#include <boost/geometry/srs/projections/impl/base_static.hpp>#include <boost/geometry/srs/projections/impl/base_dynamic.hpp>#include <boost/geometry/srs/projections/impl/factory_entry.hpp>#include <boost/geometry/srs/projections/impl/pj_param.hpp>#include <boost/geometry/srs/projections/impl/projects.hpp>#include <boost/geometry/util/math.hpp>namespace boost { namespace geometry{namespace projections{    #ifndef DOXYGEN_NO_DETAIL    namespace detail { namespace aitoff    {            enum mode_type {                mode_aitoff = 0,                mode_winkel_tripel = 1            };            template <typename T>            struct par_aitoff            {                T    cosphi1;                mode_type mode;            };            template <typename T, typename Parameters>            struct base_aitoff_spheroid            {                par_aitoff<T> m_proj_parm;                // FORWARD(s_forward)  spheroid                // Project coordinates from geographic (lon, lat) to cartesian (x, y)                inline void fwd(Parameters const& , T const& lp_lon, T const& lp_lat, T& xy_x, T& xy_y) const                {                    T c, d;                    if((d = acos(cos(lp_lat) * cos(c = 0.5 * lp_lon)))) {/* basic Aitoff */                        xy_x = 2. * d * cos(lp_lat) * sin(c) * (xy_y = 1. / sin(d));                        xy_y *= d * sin(lp_lat);                    } else                        xy_x = xy_y = 0.;                    if (this->m_proj_parm.mode == mode_winkel_tripel) { /* Winkel Tripel */                        xy_x = (xy_x + lp_lon * this->m_proj_parm.cosphi1) * 0.5;                        xy_y = (xy_y + lp_lat) * 0.5;                    }                }                /***********************************************************************************                *                * Inverse functions added by Drazen Tutic and Lovro Gradiser based on paper:                *                * I.Özbug Biklirici and Cengizhan Ipbüker. A General Algorithm for the Inverse                * Transformation of Map Projections Using Jacobian Matrices. In Proceedings of the                * Third International Symposium Mathematical & Computational Applications,                * pages 175{182, Turkey, September 2002.                *                * Expected accuracy is defined by epsilon = 1e-12. Should be appropriate for                * most applications of Aitoff and Winkel Tripel projections.                *                * Longitudes of 180W and 180E can be mixed in solution obtained.                *                * Inverse for Aitoff projection in poles is undefined, longitude value of 0 is assumed.                *                * Contact : dtutic@geof.hr                * Date: 2015-02-16                *                ************************************************************************************/                // INVERSE(s_inverse)  sphere                // Project coordinates from cartesian (x, y) to geographic (lon, lat)                inline void inv(Parameters const& , T const& xy_x, T const& xy_y, T& lp_lon, T& lp_lat) const                {                    static const T pi = detail::pi<T>();                    static const T two_pi = detail::two_pi<T>();                    static const T epsilon = 1e-12;                    int iter, max_iter = 10, round = 0, max_round = 20;                    T D, C, f1, f2, f1p, f1l, f2p, f2l, dp, dl, sl, sp, cp, cl, x, y;                    if ((fabs(xy_x) < epsilon) && (fabs(xy_y) < epsilon )) {                        lp_lat = 0.; lp_lon = 0.;                        return;                    }                    /* intial values for Newton-Raphson method */                    lp_lat = xy_y; lp_lon = xy_x;                    do {                        iter = 0;                        do {                            sl = sin(lp_lon * 0.5); cl = cos(lp_lon * 0.5);                            sp = sin(lp_lat); cp = cos(lp_lat);                            D = cp * cl;                            C = 1. - D * D;                            D = acos(D) / math::pow(C, T(1.5));                            f1 = 2. * D * C * cp * sl;                            f2 = D * C * sp;                            f1p = 2.* (sl * cl * sp * cp / C - D * sp * sl);                            f1l = cp * cp * sl * sl / C + D * cp * cl * sp * sp;                            f2p = sp * sp * cl / C + D * sl * sl * cp;                            f2l = 0.5 * (sp * cp * sl / C - D * sp * cp * cp * sl * cl);                            if (this->m_proj_parm.mode == mode_winkel_tripel) { /* Winkel Tripel */                                f1 = 0.5 * (f1 + lp_lon * this->m_proj_parm.cosphi1);                                f2 = 0.5 * (f2 + lp_lat);                                f1p *= 0.5;                                f1l = 0.5 * (f1l + this->m_proj_parm.cosphi1);                                f2p = 0.5 * (f2p + 1.);                                f2l *= 0.5;                            }                            f1 -= xy_x; f2 -= xy_y;                            dl = (f2 * f1p - f1 * f2p) / (dp = f1p * f2l - f2p * f1l);                            dp = (f1 * f2l - f2 * f1l) / dp;                            dl = fmod(dl, pi); /* set to interval [-M_PI, M_PI] */                            lp_lat -= dp;    lp_lon -= dl;                        } while ((fabs(dp) > epsilon || fabs(dl) > epsilon) && (iter++ < max_iter));                        if (lp_lat > two_pi) lp_lat -= 2.*(lp_lat-two_pi); /* correct if symmetrical solution for Aitoff */                        if (lp_lat < -two_pi) lp_lat -= 2.*(lp_lat+two_pi); /* correct if symmetrical solution for Aitoff */                        if ((fabs(fabs(lp_lat) - two_pi) < epsilon) && (!this->m_proj_parm.mode)) lp_lon = 0.; /* if pole in Aitoff, return longitude of 0 */                        /* calculate x,y coordinates with solution obtained */                        if((D = acos(cos(lp_lat) * cos(C = 0.5 * lp_lon))) != 0.0) {/* Aitoff */                            x = 2. * D * cos(lp_lat) * sin(C) * (y = 1. / sin(D));                            y *= D * sin(lp_lat);                        } else                            x = y = 0.;                        if (this->m_proj_parm.mode == mode_winkel_tripel) { /* Winkel Tripel */                            x = (x + lp_lon * this->m_proj_parm.cosphi1) * 0.5;                            y = (y + lp_lat) * 0.5;                        }                    /* if too far from given values of x,y, repeat with better approximation of phi,lam */                    } while (((fabs(xy_x-x) > epsilon) || (fabs(xy_y-y) > epsilon)) && (round++ < max_round));                    if (iter == max_iter && round == max_round)                    {                        BOOST_THROW_EXCEPTION( projection_exception(error_non_convergent) );                        //fprintf(stderr, "Warning: Accuracy of 1e-12 not reached. Last increments: dlat=%e and dlon=%e\n", dp, dl);                    }                }                static inline std::string get_name()                {                    return "aitoff_spheroid";                }            };            template <typename Parameters>            inline void setup(Parameters& par)            {                par.es = 0.;            }            // Aitoff            template <typename Parameters, typename T>            inline void setup_aitoff(Parameters& par, par_aitoff<T>& proj_parm)            {                proj_parm.mode = mode_aitoff;                setup(par);            }            // Winkel Tripel            template <typename Params, typename Parameters, typename T>            inline void setup_wintri(Params& params, Parameters& par, par_aitoff<T>& proj_parm)            {                static const T two_div_pi = detail::two_div_pi<T>();                T phi1;                proj_parm.mode = mode_winkel_tripel;                if (pj_param_r<srs::spar::lat_1>(params, "lat_1", srs::dpar::lat_1, phi1)) {                    if ((proj_parm.cosphi1 = cos(phi1)) == 0.)                        BOOST_THROW_EXCEPTION( projection_exception(error_lat_larger_than_90) );                } else /* 50d28' or phi1=acos(2/pi) */                    proj_parm.cosphi1 = two_div_pi;                setup(par);            }    }} // namespace detail::aitoff    #endif // doxygen    /*!        \brief Aitoff projection        \ingroup projections        \tparam Geographic latlong point type        \tparam Cartesian xy point type        \tparam Parameters parameter type        \par Projection characteristics         - Miscellaneous         - Spheroid        \par Example        \image html ex_aitoff.gif    */    template <typename T, typename Parameters>    struct aitoff_spheroid : public detail::aitoff::base_aitoff_spheroid<T, Parameters>    {        template <typename Params>        inline aitoff_spheroid(Params const& , Parameters & par)        {            detail::aitoff::setup_aitoff(par, this->m_proj_parm);        }    };    /*!        \brief Winkel Tripel projection        \ingroup projections        \tparam Geographic latlong point type        \tparam Cartesian xy point type        \tparam Parameters parameter type        \par Projection characteristics         - Miscellaneous         - Spheroid        \par Projection parameters         - lat_1: Latitude of first standard parallel (degrees)        \par Example        \image html ex_wintri.gif    */    template <typename T, typename Parameters>    struct wintri_spheroid : public detail::aitoff::base_aitoff_spheroid<T, Parameters>    {        template <typename Params>        inline wintri_spheroid(Params const& params, Parameters & par)        {            detail::aitoff::setup_wintri(params, par, this->m_proj_parm);        }    };    #ifndef DOXYGEN_NO_DETAIL    namespace detail    {        // Static projection        BOOST_GEOMETRY_PROJECTIONS_DETAIL_STATIC_PROJECTION_FI(srs::spar::proj_aitoff, aitoff_spheroid)        BOOST_GEOMETRY_PROJECTIONS_DETAIL_STATIC_PROJECTION_FI(srs::spar::proj_wintri, wintri_spheroid)        // Factory entry(s)        BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_ENTRY_FI(aitoff_entry, aitoff_spheroid)        BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_ENTRY_FI(wintri_entry, wintri_spheroid)        BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_INIT_BEGIN(aitoff_init)        {            BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_INIT_ENTRY(aitoff, aitoff_entry)            BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_INIT_ENTRY(wintri, wintri_entry)        }    } // namespace detail    #endif // doxygen} // namespace projections}} // namespace boost::geometry#endif // BOOST_GEOMETRY_PROJECTIONS_AITOFF_HPP
 |