| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845 | // Boost.Geometry - gis-projections (based on PROJ4)// Copyright (c) 2008-2015 Barend Gehrels, Amsterdam, the Netherlands.// This file was modified by Oracle on 2017, 2018, 2019.// Modifications copyright (c) 2017-2019, Oracle and/or its affiliates.// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle.// Use, modification and distribution is subject to the Boost Software License,// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at// http://www.boost.org/LICENSE_1_0.txt)// This file is converted from PROJ4, http://trac.osgeo.org/proj// PROJ4 is originally written by Gerald Evenden (then of the USGS)// PROJ4 is maintained by Frank Warmerdam// PROJ4 is converted to Boost.Geometry by Barend Gehrels// Last updated version of proj: 5.0.0// Original copyright notice:// Purpose: Implementation of the HEALPix and rHEALPix projections.//          For background see <http://code.scenzgrid.org/index.php/p/scenzgrid-py/source/tree/master/docs/rhealpix_dggs.pdf>.// Authors: Alex Raichev (raichev@cs.auckland.ac.nz)//          Michael Speth (spethm@landcareresearch.co.nz)// Notes:   Raichev implemented these projections in Python and//          Speth translated them into C here.// Copyright (c) 2001, Thomas Flemming, tf@ttqv.com// Permission is hereby granted, free of charge, to any person obtaining a// copy of this software and associated documentation files (the "Software"),// to deal in the Software without restriction, including without limitation// the rights to use, copy, modify, merge, publish, distribute, sublicense,// and/or sell copies of the Software, and to permit persons to whom the// Software is furnished to do so, subject to the following conditions:// The above copyright notice and this permission notice shall be included// in all copies or substantial portions of the Software.// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS// OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL// THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING// FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER// DEALINGS IN THE SOFTWARE.#ifndef BOOST_GEOMETRY_PROJECTIONS_HEALPIX_HPP#define BOOST_GEOMETRY_PROJECTIONS_HEALPIX_HPP#include <boost/geometry/srs/projections/impl/base_static.hpp>#include <boost/geometry/srs/projections/impl/base_dynamic.hpp>#include <boost/geometry/srs/projections/impl/factory_entry.hpp>#include <boost/geometry/srs/projections/impl/pj_auth.hpp>#include <boost/geometry/srs/projections/impl/pj_param.hpp>#include <boost/geometry/srs/projections/impl/pj_qsfn.hpp>#include <boost/geometry/srs/projections/impl/projects.hpp>#include <boost/geometry/util/math.hpp>namespace boost { namespace geometry{namespace projections{    #ifndef DOXYGEN_NO_DETAIL    namespace detail { namespace healpix    {            /* Fuzz to handle rounding errors: */            static const double epsilon = 1e-15;            template <typename T>            struct par_healpix            {                T qp;                detail::apa<T> apa;                int north_square;                int south_square;            };            template <typename T>            struct cap_map            {                T x, y; /* Coordinates of the pole point (point of most extreme latitude on the polar caps). */                int cn; /* An integer 0--3 indicating the position of the polar cap. */                enum region_type {north, south, equatorial} region;            };            template <typename T>            struct point_xy            {                T x, y;            };            /* IDENT, R1, R2, R3, R1 inverse, R2 inverse, R3 inverse:*/            static double rot[7][2][2] = {                /* Identity matrix */                {{1, 0},{0, 1}},                /* Matrix for counterclockwise rotation by pi/2: */                {{ 0,-1},{ 1, 0}},                /* Matrix for counterclockwise rotation by pi: */                {{-1, 0},{ 0,-1}},                /* Matrix for counterclockwise rotation by 3*pi/2:  */                {{ 0, 1},{-1, 0}},                {{ 0, 1},{-1, 0}}, // 3*pi/2                {{-1, 0},{ 0,-1}}, // pi                {{ 0,-1},{ 1, 0}}  // pi/2            };            /**             * Returns the sign of the double.             * @param v the parameter whose sign is returned.             * @return 1 for positive number, -1 for negative, and 0 for zero.             **/            template <typename T>            inline T pj_sign (T const& v)            {                return v > 0 ? 1 : (v < 0 ? -1 : 0);            }            /**             * Return the index of the matrix in {{{1, 0},{0, 1}}, {{ 0,-1},{ 1, 0}}, {{-1, 0},{ 0,-1}}, {{ 0, 1},{-1, 0}}, {{ 0, 1},{-1, 0}}, {{-1, 0},{ 0,-1}}, {{ 0,-1},{ 1, 0}}}.             * @param index ranges from -3 to 3.             */            inline int get_rotate_index(int index)            {                switch(index) {                case 0:                    return 0;                case 1:                    return 1;                case 2:                    return 2;                case 3:                    return 3;                case -1:                    return 4;                case -2:                    return 5;                case -3:                    return 6;                }                return 0;            }            /**             * Return 1 if point (testx, testy) lies in the interior of the polygon             * determined by the vertices in vert, and return 0 otherwise.             * See http://paulbourke.net/geometry/polygonmesh/ for more details.             * @param nvert the number of vertices in the polygon.             * @param vert the (x, y)-coordinates of the polygon's vertices             **/            template <typename T>            inline int pnpoly(int nvert, T vert[][2], T const& testx, T const& testy)            {                int i;                int counter = 0;                T xinters;                point_xy<T> p1, p2;                /* Check for boundrary cases */                for (i = 0; i < nvert; i++) {                    if (testx == vert[i][0] && testy == vert[i][1]) {                        return 1;                    }                }                p1.x = vert[0][0];                p1.y = vert[0][1];                for (i = 1; i < nvert; i++) {                    p2.x = vert[i % nvert][0];                    p2.y = vert[i % nvert][1];                    if (testy > (std::min)(p1.y, p2.y)  &&                        testy <= (std::max)(p1.y, p2.y) &&                        testx <= (std::max)(p1.x, p2.x) &&                        p1.y != p2.y)                    {                        xinters = (testy-p1.y)*(p2.x-p1.x)/(p2.y-p1.y)+p1.x;                        if (p1.x == p2.x || testx <= xinters)                            counter++;                    }                    p1 = p2;                }                if (counter % 2 == 0) {                    return 0;                } else {                    return 1;                }            }            /**             * Return 1 if (x, y) lies in (the interior or boundary of) the image of the             * HEALPix projection (in case proj=0) or in the image the rHEALPix projection             * (in case proj=1), and return 0 otherwise.             * @param north_square the position of the north polar square (rHEALPix only)             * @param south_square the position of the south polar square (rHEALPix only)             **/            template <typename T>            inline int in_image(T const& x, T const& y, int proj, int north_square, int south_square)            {                static const T pi = detail::pi<T>();                static const T half_pi = detail::half_pi<T>();                static const T fourth_pi = detail::fourth_pi<T>();                if (proj == 0) {                    T healpixVertsJit[][2] = {                        {-pi - epsilon,   fourth_pi},                        {-3.0*fourth_pi,  half_pi + epsilon},                        {-half_pi,        fourth_pi + epsilon},                        {-fourth_pi,      half_pi + epsilon},                        {0.0,             fourth_pi + epsilon},                        {fourth_pi,       half_pi + epsilon},                        {half_pi,         fourth_pi + epsilon},                        {3.0*fourth_pi,   half_pi + epsilon},                        {pi + epsilon,    fourth_pi},                        {pi + epsilon,   -fourth_pi},                        {3.0*fourth_pi,  -half_pi - epsilon},                        {half_pi,        -fourth_pi - epsilon},                        {fourth_pi,      -half_pi - epsilon},                        {0.0,            -fourth_pi - epsilon},                        {-fourth_pi,     -half_pi - epsilon},                        {-half_pi,       -fourth_pi - epsilon},                        {-3.0*fourth_pi, -half_pi - epsilon},                        {-pi - epsilon,  -fourth_pi}                    };                    return pnpoly((int)sizeof(healpixVertsJit)/                                  sizeof(healpixVertsJit[0]), healpixVertsJit, x, y);                } else {                    T rhealpixVertsJit[][2] = {                        {-pi - epsilon,                                 fourth_pi + epsilon},                        {-pi + north_square*half_pi - epsilon,          fourth_pi + epsilon},                        {-pi + north_square*half_pi - epsilon,          3.0*fourth_pi + epsilon},                        {-pi + (north_square + 1.0)*half_pi + epsilon,  3.0*fourth_pi + epsilon},                        {-pi + (north_square + 1.0)*half_pi + epsilon,  fourth_pi + epsilon},                        {pi + epsilon,                                  fourth_pi + epsilon},                        {pi + epsilon,                                 -fourth_pi - epsilon},                        {-pi + (south_square + 1.0)*half_pi + epsilon, -fourth_pi - epsilon},                        {-pi + (south_square + 1.0)*half_pi + epsilon, -3.0*fourth_pi - epsilon},                        {-pi + south_square*half_pi - epsilon,         -3.0*fourth_pi - epsilon},                        {-pi + south_square*half_pi - epsilon,         -fourth_pi - epsilon},                        {-pi - epsilon,                                -fourth_pi - epsilon}                    };                    return pnpoly((int)sizeof(rhealpixVertsJit)/                                  sizeof(rhealpixVertsJit[0]), rhealpixVertsJit, x, y);                }            }            /**             * Return the authalic latitude of latitude alpha (if inverse=0) or             * return the approximate latitude of authalic latitude alpha (if inverse=1).             * P contains the relavent ellipsoid parameters.             **/            template <typename Parameters, typename T>            inline T auth_lat(const Parameters& par, const par_healpix<T>& proj_parm, T const& alpha, int inverse)            {                if (inverse == 0) {                    /* Authalic latitude. */                    T q = pj_qsfn(sin(alpha), par.e, 1.0 - par.es);                    T qp = proj_parm.qp;                    T ratio = q/qp;                    if (math::abs(ratio) > 1) {                        /* Rounding error. */                        ratio = pj_sign(ratio);                    }                    return asin(ratio);                } else {                    /* Approximation to inverse authalic latitude. */                    return pj_authlat(alpha, proj_parm.apa);                }            }            /**             * Return the HEALPix projection of the longitude-latitude point lp on             * the unit sphere.            **/            template <typename T>            inline void healpix_sphere(T const& lp_lam, T const& lp_phi, T& xy_x, T& xy_y)            {                               static const T pi = detail::pi<T>();                static const T half_pi = detail::half_pi<T>();                static const T fourth_pi = detail::fourth_pi<T>();                T lam = lp_lam;                T phi = lp_phi;                T phi0 = asin(T(2.0)/T(3.0));                /* equatorial region */                if ( fabsl(phi) <= phi0) {                    xy_x = lam;                    xy_y = 3.0*pi/8.0*sin(phi);                } else {                    T lamc;                    T sigma = sqrt(3.0*(1 - math::abs(sin(phi))));                    T cn = floor(2*lam / pi + 2);                    if (cn >= 4) {                        cn = 3;                    }                    lamc = -3*fourth_pi + half_pi*cn;                    xy_x = lamc + (lam - lamc)*sigma;                    xy_y = pj_sign(phi)*fourth_pi*(2 - sigma);                }                return;            }            /**             * Return the inverse of healpix_sphere().            **/            template <typename T>            inline void healpix_sphere_inverse(T const& xy_x, T const& xy_y, T& lp_lam, T& lp_phi)            {                                static const T pi = detail::pi<T>();                static const T half_pi = detail::half_pi<T>();                static const T fourth_pi = detail::fourth_pi<T>();                T x = xy_x;                T y = xy_y;                T y0 = fourth_pi;                /* Equatorial region. */                if (math::abs(y) <= y0) {                    lp_lam = x;                    lp_phi = asin(8.0*y/(3.0*pi));                } else if (fabsl(y) < half_pi) {                    T cn = floor(2.0*x/pi + 2.0);                    T xc, tau;                    if (cn >= 4) {                        cn = 3;                    }                    xc = -3.0*fourth_pi + (half_pi)*cn;                    tau = 2.0 - 4.0*fabsl(y)/pi;                    lp_lam = xc + (x - xc)/tau;                    lp_phi = pj_sign(y)*asin(1.0 - math::pow(tau, 2)/3.0);                } else {                    lp_lam = -1.0*pi;                    lp_phi = pj_sign(y)*half_pi;                }                return;            }            /**             * Return the vector sum a + b, where a and b are 2-dimensional vectors.             * @param ret holds a + b.             **/            template <typename T>            inline void vector_add(const T a[2], const T b[2], T ret[2])            {                int i;                for(i = 0; i < 2; i++) {                    ret[i] = a[i] + b[i];                }            }            /**             * Return the vector difference a - b, where a and b are 2-dimensional vectors.             * @param ret holds a - b.             **/            template <typename T>            inline void vector_sub(const T a[2], const T b[2], T ret[2])            {                int i;                for(i = 0; i < 2; i++) {                    ret[i] = a[i] - b[i];                }            }            /**             * Return the 2 x 1 matrix product a*b, where a is a 2 x 2 matrix and             * b is a 2 x 1 matrix.             * @param ret holds a*b.             **/            template <typename T1, typename T2>            inline void dot_product(const T1 a[2][2], const T2 b[2], T2 ret[2])            {                int i, j;                int length = 2;                for(i = 0; i < length; i++) {                    ret[i] = 0;                    for(j = 0; j < length; j++) {                        ret[i] += a[i][j]*b[j];                    }                }            }            /**             * Return the number of the polar cap, the pole point coordinates, and             * the region that (x, y) lies in.             * If inverse=0, then assume (x,y) lies in the image of the HEALPix             * projection of the unit sphere.             * If inverse=1, then assume (x,y) lies in the image of the             * (north_square, south_square)-rHEALPix projection of the unit sphere.             **/            template <typename T>            inline cap_map<T> get_cap(T x, T const& y, int north_square, int south_square,                                     int inverse)            {                static const T pi = detail::pi<T>();                static const T half_pi = detail::half_pi<T>();                static const T fourth_pi = detail::fourth_pi<T>();                cap_map<T> capmap;                T c;                capmap.x = x;                capmap.y = y;                if (inverse == 0) {                    if (y > fourth_pi) {                        capmap.region = cap_map<T>::north;                        c = half_pi;                    } else if (y < -fourth_pi) {                        capmap.region = cap_map<T>::south;                        c = -half_pi;                    } else {                        capmap.region = cap_map<T>::equatorial;                        capmap.cn = 0;                        return capmap;                    }                    /* polar region */                    if (x < -half_pi) {                        capmap.cn = 0;                        capmap.x = (-3.0*fourth_pi);                        capmap.y = c;                    } else if (x >= -half_pi && x < 0) {                        capmap.cn = 1;                        capmap.x = -fourth_pi;                        capmap.y = c;                    } else if (x >= 0 && x < half_pi) {                        capmap.cn = 2;                        capmap.x = fourth_pi;                        capmap.y = c;                    } else {                        capmap.cn = 3;                        capmap.x = 3.0*fourth_pi;                        capmap.y = c;                    }                } else {                    if (y > fourth_pi) {                        capmap.region = cap_map<T>::north;                        capmap.x = (-3.0*fourth_pi + north_square*half_pi);                        capmap.y = half_pi;                        x = x - north_square*half_pi;                    } else if (y < -fourth_pi) {                        capmap.region = cap_map<T>::south;                        capmap.x = (-3.0*fourth_pi + south_square*pi/2);                        capmap.y = -half_pi;                        x = x - south_square*half_pi;                    } else {                        capmap.region = cap_map<T>::equatorial;                        capmap.cn = 0;                        return capmap;                    }                    /* Polar Region, find the HEALPix polar cap number that                       x, y moves to when rHEALPix polar square is disassembled. */                    if (capmap.region == cap_map<T>::north) {                        if (y >= -x - fourth_pi - epsilon && y < x + 5.0*fourth_pi - epsilon) {                            capmap.cn = (north_square + 1) % 4;                        } else if (y > -x -fourth_pi + epsilon && y >= x + 5.0*fourth_pi - epsilon) {                            capmap.cn = (north_square + 2) % 4;                        } else if (y <= -x -fourth_pi + epsilon && y > x + 5.0*fourth_pi + epsilon) {                            capmap.cn = (north_square + 3) % 4;                        } else {                            capmap.cn = north_square;                        }                    } else if (capmap.region == cap_map<T>::south) {                        if (y <= x + fourth_pi + epsilon && y > -x - 5.0*fourth_pi + epsilon) {                            capmap.cn = (south_square + 1) % 4;                        } else if (y < x + fourth_pi - epsilon && y <= -x - 5.0*fourth_pi + epsilon) {                            capmap.cn = (south_square + 2) % 4;                        } else if (y >= x + fourth_pi - epsilon && y < -x - 5.0*fourth_pi - epsilon) {                            capmap.cn = (south_square + 3) % 4;                        } else {                            capmap.cn = south_square;                        }                    }                }                return capmap;            }            /**             * Rearrange point (x, y) in the HEALPix projection by             * combining the polar caps into two polar squares.             * Put the north polar square in position north_square and             * the south polar square in position south_square.             * If inverse=1, then uncombine the polar caps.             * @param north_square integer between 0 and 3.             * @param south_square integer between 0 and 3.             **/            template <typename T>            inline void combine_caps(T& xy_x, T& xy_y, int north_square, int south_square,                                     int inverse)            {                static const T half_pi = detail::half_pi<T>();                static const T fourth_pi = detail::fourth_pi<T>();                T v[2];                T c[2];                T vector[2];                T v_min_c[2];                T ret_dot[2];                const double (*tmpRot)[2];                int pole = 0;                cap_map<T> capmap = get_cap(xy_x, xy_y, north_square, south_square, inverse);                if (capmap.region == cap_map<T>::equatorial) {                    xy_x = capmap.x;                    xy_y = capmap.y;                    return;                }                v[0] = xy_x; v[1] = xy_y;                c[0] = capmap.x; c[1] = capmap.y;                if (inverse == 0) {                    /* Rotate (xy_x, xy_y) about its polar cap tip and then translate it to                       north_square or south_square. */                    if (capmap.region == cap_map<T>::north) {                        pole = north_square;                        tmpRot = rot[get_rotate_index(capmap.cn - pole)];                    } else {                        pole = south_square;                        tmpRot = rot[get_rotate_index(-1*(capmap.cn - pole))];                    }                } else {                    /* Inverse function.                     Unrotate (xy_x, xy_y) and then translate it back. */                    /* disassemble */                    if (capmap.region == cap_map<T>::north) {                        pole = north_square;                        tmpRot = rot[get_rotate_index(-1*(capmap.cn - pole))];                    } else {                        pole = south_square;                        tmpRot = rot[get_rotate_index(capmap.cn - pole)];                    }                }                vector_sub(v, c, v_min_c);                dot_product(tmpRot, v_min_c, ret_dot);                {                    T a[2];                    /* Workaround cppcheck git issue */                    T* pa = a;                    // TODO: in proj4 5.0.0 this line is used instead                    //pa[0] = -3.0*fourth_pi + ((inverse == 0) ? 0 : capmap.cn) *half_pi;                    pa[0] = -3.0*fourth_pi + ((inverse == 0) ? pole : capmap.cn) *half_pi;                    pa[1] = half_pi;                    vector_add(ret_dot, a, vector);                }                xy_x = vector[0];                xy_y = vector[1];            }            template <typename T, typename Parameters>            struct base_healpix_ellipsoid            {                par_healpix<T> m_proj_parm;                // FORWARD(e_healpix_forward)  ellipsoid                // Project coordinates from geographic (lon, lat) to cartesian (x, y)                inline void fwd(Parameters const& par, T const& lp_lon, T lp_lat, T& xy_x, T& xy_y) const                {                    lp_lat = auth_lat(par, m_proj_parm, lp_lat, 0);                    return healpix_sphere(lp_lon, lp_lat, xy_x, xy_y);                }                // INVERSE(e_healpix_inverse)  ellipsoid                // Project coordinates from cartesian (x, y) to geographic (lon, lat)                inline void inv(Parameters const& par, T const& xy_x, T const& xy_y, T& lp_lon, T& lp_lat) const                {                    /* Check whether (x, y) lies in the HEALPix image. */                    if (in_image(xy_x, xy_y, 0, 0, 0) == 0) {                        lp_lon = HUGE_VAL;                        lp_lat = HUGE_VAL;                        BOOST_THROW_EXCEPTION( projection_exception(error_invalid_x_or_y) );                    }                    healpix_sphere_inverse(xy_x, xy_y, lp_lon, lp_lat);                    lp_lat = auth_lat(par, m_proj_parm, lp_lat, 1);                }                static inline std::string get_name()                {                    return "healpix_ellipsoid";                }            };            template <typename T, typename Parameters>            struct base_healpix_spheroid            {                par_healpix<T> m_proj_parm;                // FORWARD(s_healpix_forward)  sphere                // Project coordinates from geographic (lon, lat) to cartesian (x, y)                inline void fwd(Parameters const& , T const& lp_lon, T const& lp_lat, T& xy_x, T& xy_y) const                {                    return healpix_sphere(lp_lon, lp_lat, xy_x, xy_y);                }                // INVERSE(s_healpix_inverse)  sphere                // Project coordinates from cartesian (x, y) to geographic (lon, lat)                inline void inv(Parameters const& , T const& xy_x, T const& xy_y, T& lp_lon, T& lp_lat) const                {                    /* Check whether (x, y) lies in the HEALPix image */                    if (in_image(xy_x, xy_y, 0, 0, 0) == 0) {                        lp_lon = HUGE_VAL;                        lp_lat = HUGE_VAL;                        BOOST_THROW_EXCEPTION( projection_exception(error_invalid_x_or_y) );                    }                    return healpix_sphere_inverse(xy_x, xy_y, lp_lon, lp_lat);                }                static inline std::string get_name()                {                    return "healpix_spheroid";                }            };            template <typename T, typename Parameters>            struct base_rhealpix_ellipsoid            {                par_healpix<T> m_proj_parm;                // FORWARD(e_rhealpix_forward)  ellipsoid                // Project coordinates from geographic (lon, lat) to cartesian (x, y)                inline void fwd(Parameters const& par, T const& lp_lon, T lp_lat, T& xy_x, T& xy_y) const                {                    lp_lat = auth_lat(par, m_proj_parm, lp_lat, 0);                    healpix_sphere(lp_lon, lp_lat, xy_x, xy_y);                    combine_caps(xy_x, xy_y, this->m_proj_parm.north_square, this->m_proj_parm.south_square, 0);                }                // INVERSE(e_rhealpix_inverse)  ellipsoid                // Project coordinates from cartesian (x, y) to geographic (lon, lat)                inline void inv(Parameters const& par, T xy_x, T xy_y, T& lp_lon, T& lp_lat) const                {                    /* Check whether (x, y) lies in the rHEALPix image. */                    if (in_image(xy_x, xy_y, 1, this->m_proj_parm.north_square, this->m_proj_parm.south_square) == 0) {                        lp_lon = HUGE_VAL;                        lp_lat = HUGE_VAL;                        BOOST_THROW_EXCEPTION( projection_exception(error_invalid_x_or_y) );                    }                    combine_caps(xy_x, xy_y, this->m_proj_parm.north_square, this->m_proj_parm.south_square, 1);                    healpix_sphere_inverse(xy_x, xy_y, lp_lon, lp_lat);                    lp_lat = auth_lat(par, m_proj_parm, lp_lat, 1);                }                static inline std::string get_name()                {                    return "rhealpix_ellipsoid";                }            };            template <typename T, typename Parameters>            struct base_rhealpix_spheroid            {                par_healpix<T> m_proj_parm;                // FORWARD(s_rhealpix_forward)  sphere                // Project coordinates from geographic (lon, lat) to cartesian (x, y)                inline void fwd(Parameters const& , T const& lp_lon, T const& lp_lat, T& xy_x, T& xy_y) const                {                    healpix_sphere(lp_lon, lp_lat, xy_x, xy_y);                    combine_caps(xy_x, xy_y, this->m_proj_parm.north_square, this->m_proj_parm.south_square, 0);                }                // INVERSE(s_rhealpix_inverse)  sphere                // Project coordinates from cartesian (x, y) to geographic (lon, lat)                inline void inv(Parameters const& , T xy_x, T xy_y, T& lp_lon, T& lp_lat) const                {                    /* Check whether (x, y) lies in the rHEALPix image. */                    if (in_image(xy_x, xy_y, 1, this->m_proj_parm.north_square, this->m_proj_parm.south_square) == 0) {                        lp_lon = HUGE_VAL;                        lp_lat = HUGE_VAL;                        BOOST_THROW_EXCEPTION( projection_exception(error_invalid_x_or_y) );                    }                    combine_caps(xy_x, xy_y, this->m_proj_parm.north_square, this->m_proj_parm.south_square, 1);                    return healpix_sphere_inverse(xy_x, xy_y, lp_lon, lp_lat);                }                static inline std::string get_name()                {                    return "rhealpix_spheroid";                }            };            // HEALPix            template <typename Parameters, typename T>            inline void setup_healpix(Parameters& par, par_healpix<T>& proj_parm)            {                if (par.es != 0.0) {                    proj_parm.apa = pj_authset<T>(par.es); /* For auth_lat(). */                    proj_parm.qp = pj_qsfn(1.0, par.e, par.one_es); /* For auth_lat(). */                    par.a = par.a*sqrt(0.5*proj_parm.qp); /* Set par.a to authalic radius. */                    pj_calc_ellipsoid_params(par, par.a, par.es); /* Ensure we have a consistent parameter set */                } else {                }            }            // rHEALPix            template <typename Params, typename Parameters, typename T>            inline void setup_rhealpix(Params const& params, Parameters& par, par_healpix<T>& proj_parm)            {                proj_parm.north_square = pj_get_param_i<srs::spar::north_square>(params, "north_square", srs::dpar::north_square);                proj_parm.south_square = pj_get_param_i<srs::spar::south_square>(params, "south_square", srs::dpar::south_square);                /* Check for valid north_square and south_square inputs. */                if ((proj_parm.north_square < 0) || (proj_parm.north_square > 3)) {                    BOOST_THROW_EXCEPTION( projection_exception(error_axis) );                }                if ((proj_parm.south_square < 0) || (proj_parm.south_square > 3)) {                    BOOST_THROW_EXCEPTION( projection_exception(error_axis) );                }                if (par.es != 0.0) {                    proj_parm.apa = pj_authset<T>(par.es); /* For auth_lat(). */                    proj_parm.qp = pj_qsfn(1.0, par.e, par.one_es); /* For auth_lat(). */                    par.a = par.a*sqrt(0.5*proj_parm.qp); /* Set par.a to authalic radius. */                    // TODO: why not the same as in healpix?                    //pj_calc_ellipsoid_params(par, par.a, par.es);                    par.ra = 1.0/par.a;                } else {                }            }    }} // namespace detail::healpix    #endif // doxygen    /*!        \brief HEALPix projection        \ingroup projections        \tparam Geographic latlong point type        \tparam Cartesian xy point type        \tparam Parameters parameter type        \par Projection characteristics         - Spheroid         - Ellipsoid        \par Example        \image html ex_healpix.gif    */    template <typename T, typename Parameters>    struct healpix_ellipsoid : public detail::healpix::base_healpix_ellipsoid<T, Parameters>    {        template <typename Params>        inline healpix_ellipsoid(Params const& , Parameters & par)        {            detail::healpix::setup_healpix(par, this->m_proj_parm);        }    };    /*!        \brief HEALPix projection        \ingroup projections        \tparam Geographic latlong point type        \tparam Cartesian xy point type        \tparam Parameters parameter type        \par Projection characteristics         - Spheroid         - Ellipsoid        \par Example        \image html ex_healpix.gif    */    template <typename T, typename Parameters>    struct healpix_spheroid : public detail::healpix::base_healpix_spheroid<T, Parameters>    {        template <typename Params>        inline healpix_spheroid(Params const& , Parameters & par)        {            detail::healpix::setup_healpix(par, this->m_proj_parm);        }    };    /*!        \brief rHEALPix projection        \ingroup projections        \tparam Geographic latlong point type        \tparam Cartesian xy point type        \tparam Parameters parameter type        \par Projection characteristics         - Spheroid         - Ellipsoid        \par Projection parameters         - north_square (integer)         - south_square (integer)        \par Example        \image html ex_rhealpix.gif    */    template <typename T, typename Parameters>    struct rhealpix_ellipsoid : public detail::healpix::base_rhealpix_ellipsoid<T, Parameters>    {        template <typename Params>        inline rhealpix_ellipsoid(Params const& params, Parameters & par)        {            detail::healpix::setup_rhealpix(params, par, this->m_proj_parm);        }    };    /*!        \brief rHEALPix projection        \ingroup projections        \tparam Geographic latlong point type        \tparam Cartesian xy point type        \tparam Parameters parameter type        \par Projection characteristics         - Spheroid         - Ellipsoid        \par Projection parameters         - north_square (integer)         - south_square (integer)        \par Example        \image html ex_rhealpix.gif    */    template <typename T, typename Parameters>    struct rhealpix_spheroid : public detail::healpix::base_rhealpix_spheroid<T, Parameters>    {        template <typename Params>        inline rhealpix_spheroid(Params const& params, Parameters & par)        {            detail::healpix::setup_rhealpix(params, par, this->m_proj_parm);        }    };    #ifndef DOXYGEN_NO_DETAIL    namespace detail    {        // Static projection        BOOST_GEOMETRY_PROJECTIONS_DETAIL_STATIC_PROJECTION_FI2(srs::spar::proj_healpix, healpix_spheroid, healpix_ellipsoid)        BOOST_GEOMETRY_PROJECTIONS_DETAIL_STATIC_PROJECTION_FI2(srs::spar::proj_rhealpix, rhealpix_spheroid, rhealpix_ellipsoid)        // Factory entry(s)        BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_ENTRY_FI2(healpix_entry, healpix_spheroid, healpix_ellipsoid)        BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_ENTRY_FI2(rhealpix_entry, rhealpix_spheroid, rhealpix_ellipsoid)                BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_INIT_BEGIN(healpix_init)        {            BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_INIT_ENTRY(healpix, healpix_entry)            BOOST_GEOMETRY_PROJECTIONS_DETAIL_FACTORY_INIT_ENTRY(rhealpix, rhealpix_entry)        }    } // namespace detail    #endif // doxygen} // namespace projections}} // namespace boost::geometry#endif // BOOST_GEOMETRY_PROJECTIONS_HEALPIX_HPP
 |