| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179 | //  (C) Copyright John Maddock 2006.//  Use, modification and distribution are subject to the//  Boost Software License, Version 1.0. (See accompanying file//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)#ifndef BOOST_MATH_SF_CBRT_HPP#define BOOST_MATH_SF_CBRT_HPP#ifdef _MSC_VER#pragma once#endif#include <boost/math/tools/rational.hpp>#include <boost/math/policies/error_handling.hpp>#include <boost/math/special_functions/math_fwd.hpp>#include <boost/math/special_functions/fpclassify.hpp>#include <boost/mpl/divides.hpp>#include <boost/mpl/plus.hpp>#include <boost/mpl/if.hpp>#include <boost/type_traits/is_convertible.hpp>namespace boost{ namespace math{namespace detail{struct big_int_type{   operator boost::uintmax_t()const;};template <class T>struct largest_cbrt_int_type{   typedef typename mpl::if_c<      boost::is_convertible<big_int_type, T>::value,      boost::uintmax_t,      unsigned int   >::type type;};template <class T, class Policy>T cbrt_imp(T z, const Policy& pol){   BOOST_MATH_STD_USING   //   // cbrt approximation for z in the range [0.5,1]   // It's hard to say what number of terms gives the optimum   // trade off between precision and performance, this seems   // to be about the best for double precision.   //   // Maximum Deviation Found:                     1.231e-006   // Expected Error Term:                         -1.231e-006   // Maximum Relative Change in Control Points:   5.982e-004   //   static const T P[] = {       static_cast<T>(0.37568269008611818),      static_cast<T>(1.3304968705558024),      static_cast<T>(-1.4897101632445036),      static_cast<T>(1.2875573098219835),      static_cast<T>(-0.6398703759826468),      static_cast<T>(0.13584489959258635),   };   static const T correction[] = {      static_cast<T>(0.62996052494743658238360530363911),  // 2^-2/3      static_cast<T>(0.79370052598409973737585281963615),  // 2^-1/3      static_cast<T>(1),      static_cast<T>(1.2599210498948731647672106072782),   // 2^1/3      static_cast<T>(1.5874010519681994747517056392723),   // 2^2/3   };   if((boost::math::isinf)(z) || (z == 0))      return z;   if(!(boost::math::isfinite)(z))   {      return policies::raise_domain_error("boost::math::cbrt<%1%>(%1%)", "Argument to function must be finite but got %1%.", z, pol);   }   int i_exp, sign(1);   if(z < 0)   {      z = -z;      sign = -sign;   }   T guess = frexp(z, &i_exp);   int original_i_exp = i_exp; // save for later   guess = tools::evaluate_polynomial(P, guess);   int i_exp3 = i_exp / 3;   typedef typename largest_cbrt_int_type<T>::type shift_type;   BOOST_STATIC_ASSERT( ::std::numeric_limits<shift_type>::radix == 2);   if(abs(i_exp3) < std::numeric_limits<shift_type>::digits)   {      if(i_exp3 > 0)         guess *= shift_type(1u) << i_exp3;      else         guess /= shift_type(1u) << -i_exp3;   }   else   {      guess = ldexp(guess, i_exp3);   }   i_exp %= 3;   guess *= correction[i_exp + 2];   //   // Now inline Halley iteration.   // We do this here rather than calling tools::halley_iterate since we can   // simplify the expressions algebraically, and don't need most of the error   // checking of the boilerplate version as we know in advance that the function   // is well behaved...   //   typedef typename policies::precision<T, Policy>::type prec;   typedef typename mpl::divides<prec, boost::integral_constant<int, 3> >::type prec3;   typedef typename mpl::plus<prec3, boost::integral_constant<int, 3> >::type new_prec;   typedef typename policies::normalise<Policy, policies::digits2<new_prec::value> >::type new_policy;   //   // Epsilon calculation uses compile time arithmetic when it's available for type T,   // otherwise uses ldexp to calculate at runtime:   //   T eps = (new_prec::value > 3) ? policies::get_epsilon<T, new_policy>() : ldexp(T(1), -2 - tools::digits<T>() / 3);   T diff;   if(original_i_exp < std::numeric_limits<T>::max_exponent - 3)   {      //      // Safe from overflow, use the fast method:      //      do      {         T g3 = guess * guess * guess;         diff = (g3 + z + z) / (g3 + g3 + z);         guess *= diff;      }      while(fabs(1 - diff) > eps);   }   else   {      //      // Either we're ready to overflow, or we can't tell because numeric_limits isn't      // available for type T:      //      do      {         T g2 = guess * guess;         diff = (g2 - z / guess) / (2 * guess + z / g2);         guess -= diff;      }      while((guess * eps) < fabs(diff));   }   return sign * guess;}} // namespace detailtemplate <class T, class Policy>inline typename tools::promote_args<T>::type cbrt(T z, const Policy& pol){   typedef typename tools::promote_args<T>::type result_type;   typedef typename policies::evaluation<result_type, Policy>::type value_type;   return static_cast<result_type>(detail::cbrt_imp(value_type(z), pol));}template <class T>inline typename tools::promote_args<T>::type cbrt(T z){   return cbrt(z, policies::policy<>());}} // namespace math} // namespace boost#endif // BOOST_MATH_SF_CBRT_HPP
 |