| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381 | /* * This RFC 1321 compatible MD5 implementation originated at: * http://openwall.info/wiki/people/solar/software/public-domain-source-code/md5 * * Author: * Alexander Peslyak, better known as Solar Designer <solar at openwall.com> * * This software was written by Alexander Peslyak in 2001.  No copyright is * claimed, and the software is hereby placed in the public domain. * In case this attempt to disclaim copyright and place the software in the * public domain is deemed null and void, then the software is * Copyright (c) 2001 Alexander Peslyak and it is hereby released to the * general public under the following terms: * * Redistribution and use in source and binary forms, with or without * modification, are permitted. * * There's ABSOLUTELY NO WARRANTY, express or implied. * */// Distributed under the Boost Software License, Version 1.0. (See// accompanying file LICENSE_1_0.txt or copy at// https://www.boost.org/LICENSE_1_0.txt)#ifndef BOOST_UUID_MD5_HPP#define BOOST_UUID_MD5_HPP#include <boost/cast.hpp>#include <boost/config.hpp>#include <boost/cstdint.hpp>#include <boost/uuid/uuid.hpp> // for version#include <boost/predef/other/endian.h>#include <string.h>namespace boost {namespace uuids {namespace detail {class md5{public:    typedef unsigned int(digest_type)[4];    md5()    {        MD5_Init(&ctx_);    }    void process_byte(unsigned char byte)    {        MD5_Update(&ctx_, &byte, 1);    }    void process_bytes(void const* buffer, std::size_t byte_count)    {        MD5_Update(&ctx_, buffer, boost::numeric_cast<unsigned long>(byte_count));    }    void get_digest(digest_type& digest)    {        MD5_Final(reinterpret_cast<unsigned char *>(&digest[0]), &ctx_);    }    unsigned char get_version() const    {        // RFC 4122 Section 4.1.3        return uuid::version_name_based_md5;    }private:    /* Any 32-bit or wider unsigned integer data type will do */    typedef uint32_t MD5_u32plus;    typedef struct {        MD5_u32plus lo, hi;        MD5_u32plus a, b, c, d;        unsigned char buffer[64];        MD5_u32plus block[16];    } MD5_CTX;    /*     * The basic MD5 functions.     *     * F and G are optimized compared to their RFC 1321 definitions for     * architectures that lack an AND-NOT instruction, just like in Colin Plumb's     * implementation.     */    BOOST_FORCEINLINE MD5_u32plus BOOST_UUID_DETAIL_MD5_F(MD5_u32plus x, MD5_u32plus y, MD5_u32plus z) { return ((z) ^ ((x) & ((y) ^ (z)))); }    BOOST_FORCEINLINE MD5_u32plus BOOST_UUID_DETAIL_MD5_G(MD5_u32plus x, MD5_u32plus y, MD5_u32plus z) { return ((y) ^ ((z) & ((x) ^ (y)))); }    BOOST_FORCEINLINE MD5_u32plus BOOST_UUID_DETAIL_MD5_H(MD5_u32plus x, MD5_u32plus y, MD5_u32plus z) { return (((x) ^ (y)) ^ (z)); }    BOOST_FORCEINLINE MD5_u32plus BOOST_UUID_DETAIL_MD5_H2(MD5_u32plus x, MD5_u32plus y, MD5_u32plus z) { return ((x) ^ ((y) ^ (z))); }    BOOST_FORCEINLINE MD5_u32plus BOOST_UUID_DETAIL_MD5_I(MD5_u32plus x, MD5_u32plus y, MD5_u32plus z) { return ((y) ^ ((x) | ~(z))); }    /*     * The MD5 transformation for all four rounds.     */    #define BOOST_UUID_DETAIL_MD5_STEP(f, a, b, c, d, x, t, s) \        (a) += f((b), (c), (d)) + (x) + (t); \        (a) = (((a) << (s)) | (((a) & 0xffffffff) >> (32 - (s)))); \        (a) += (b);    /*     * SET reads 4 input bytes in little-endian byte order and stores them in a     * properly aligned word in host byte order.     *     * The check for little-endian architectures that tolerate unaligned memory     * accesses is just an optimization.  Nothing will break if it fails to detect     * a suitable architecture.     *     * Unfortunately, this optimization may be a C strict aliasing rules violation     * if the caller's data buffer has effective type that cannot be aliased by     * MD5_u32plus.  In practice, this problem may occur if these MD5 routines are     * inlined into a calling function, or with future and dangerously advanced     * link-time optimizations.  For the time being, keeping these MD5 routines in     * their own translation unit avoids the problem.     */    #if defined(__i386__) || defined(__x86_64__) || defined(__vax__)    #define BOOST_UUID_DETAIL_MD5_SET(n) \        (*(MD5_u32plus *)&ptr[(n) * 4])    #define BOOST_UUID_DETAIL_MD5_GET(n) \        BOOST_UUID_DETAIL_MD5_SET(n)    #else    #define BOOST_UUID_DETAIL_MD5_SET(n) \        (ctx->block[(n)] = \        (MD5_u32plus)ptr[(n) * 4] | \        ((MD5_u32plus)ptr[(n) * 4 + 1] << 8) | \        ((MD5_u32plus)ptr[(n) * 4 + 2] << 16) | \        ((MD5_u32plus)ptr[(n) * 4 + 3] << 24))    #define BOOST_UUID_DETAIL_MD5_GET(n) \        (ctx->block[(n)])    #endif    /*     * This processes one or more 64-byte data blocks, but does NOT update the bit     * counters.  There are no alignment requirements.     */    const void *body(MD5_CTX *ctx, const void *data, unsigned long size)    {        const unsigned char *ptr;        MD5_u32plus a, b, c, d;        MD5_u32plus saved_a, saved_b, saved_c, saved_d;        ptr = (const unsigned char *)data;        a = ctx->a;        b = ctx->b;        c = ctx->c;        d = ctx->d;        do {            saved_a = a;            saved_b = b;            saved_c = c;            saved_d = d;    /* Round 1 */            BOOST_UUID_DETAIL_MD5_STEP(BOOST_UUID_DETAIL_MD5_F, a, b, c, d, BOOST_UUID_DETAIL_MD5_SET(0), 0xd76aa478, 7)            BOOST_UUID_DETAIL_MD5_STEP(BOOST_UUID_DETAIL_MD5_F, d, a, b, c, BOOST_UUID_DETAIL_MD5_SET(1), 0xe8c7b756, 12)            BOOST_UUID_DETAIL_MD5_STEP(BOOST_UUID_DETAIL_MD5_F, c, d, a, b, BOOST_UUID_DETAIL_MD5_SET(2), 0x242070db, 17)            BOOST_UUID_DETAIL_MD5_STEP(BOOST_UUID_DETAIL_MD5_F, b, c, d, a, BOOST_UUID_DETAIL_MD5_SET(3), 0xc1bdceee, 22)            BOOST_UUID_DETAIL_MD5_STEP(BOOST_UUID_DETAIL_MD5_F, a, b, c, d, BOOST_UUID_DETAIL_MD5_SET(4), 0xf57c0faf, 7)            BOOST_UUID_DETAIL_MD5_STEP(BOOST_UUID_DETAIL_MD5_F, d, a, b, c, BOOST_UUID_DETAIL_MD5_SET(5), 0x4787c62a, 12)            BOOST_UUID_DETAIL_MD5_STEP(BOOST_UUID_DETAIL_MD5_F, c, d, a, b, BOOST_UUID_DETAIL_MD5_SET(6), 0xa8304613, 17)            BOOST_UUID_DETAIL_MD5_STEP(BOOST_UUID_DETAIL_MD5_F, b, c, d, a, BOOST_UUID_DETAIL_MD5_SET(7), 0xfd469501, 22)            BOOST_UUID_DETAIL_MD5_STEP(BOOST_UUID_DETAIL_MD5_F, a, b, c, d, BOOST_UUID_DETAIL_MD5_SET(8), 0x698098d8, 7)            BOOST_UUID_DETAIL_MD5_STEP(BOOST_UUID_DETAIL_MD5_F, d, a, b, c, BOOST_UUID_DETAIL_MD5_SET(9), 0x8b44f7af, 12)            BOOST_UUID_DETAIL_MD5_STEP(BOOST_UUID_DETAIL_MD5_F, c, d, a, b, BOOST_UUID_DETAIL_MD5_SET(10), 0xffff5bb1, 17)            BOOST_UUID_DETAIL_MD5_STEP(BOOST_UUID_DETAIL_MD5_F, b, c, d, a, BOOST_UUID_DETAIL_MD5_SET(11), 0x895cd7be, 22)            BOOST_UUID_DETAIL_MD5_STEP(BOOST_UUID_DETAIL_MD5_F, a, b, c, d, BOOST_UUID_DETAIL_MD5_SET(12), 0x6b901122, 7)            BOOST_UUID_DETAIL_MD5_STEP(BOOST_UUID_DETAIL_MD5_F, d, a, b, c, BOOST_UUID_DETAIL_MD5_SET(13), 0xfd987193, 12)            BOOST_UUID_DETAIL_MD5_STEP(BOOST_UUID_DETAIL_MD5_F, c, d, a, b, BOOST_UUID_DETAIL_MD5_SET(14), 0xa679438e, 17)            BOOST_UUID_DETAIL_MD5_STEP(BOOST_UUID_DETAIL_MD5_F, b, c, d, a, BOOST_UUID_DETAIL_MD5_SET(15), 0x49b40821, 22)    /* Round 2 */            BOOST_UUID_DETAIL_MD5_STEP(BOOST_UUID_DETAIL_MD5_G, a, b, c, d, BOOST_UUID_DETAIL_MD5_GET(1), 0xf61e2562, 5)            BOOST_UUID_DETAIL_MD5_STEP(BOOST_UUID_DETAIL_MD5_G, d, a, b, c, BOOST_UUID_DETAIL_MD5_GET(6), 0xc040b340, 9)            BOOST_UUID_DETAIL_MD5_STEP(BOOST_UUID_DETAIL_MD5_G, c, d, a, b, BOOST_UUID_DETAIL_MD5_GET(11), 0x265e5a51, 14)            BOOST_UUID_DETAIL_MD5_STEP(BOOST_UUID_DETAIL_MD5_G, b, c, d, a, BOOST_UUID_DETAIL_MD5_GET(0), 0xe9b6c7aa, 20)            BOOST_UUID_DETAIL_MD5_STEP(BOOST_UUID_DETAIL_MD5_G, a, b, c, d, BOOST_UUID_DETAIL_MD5_GET(5), 0xd62f105d, 5)            BOOST_UUID_DETAIL_MD5_STEP(BOOST_UUID_DETAIL_MD5_G, d, a, b, c, BOOST_UUID_DETAIL_MD5_GET(10), 0x02441453, 9)            BOOST_UUID_DETAIL_MD5_STEP(BOOST_UUID_DETAIL_MD5_G, c, d, a, b, BOOST_UUID_DETAIL_MD5_GET(15), 0xd8a1e681, 14)            BOOST_UUID_DETAIL_MD5_STEP(BOOST_UUID_DETAIL_MD5_G, b, c, d, a, BOOST_UUID_DETAIL_MD5_GET(4), 0xe7d3fbc8, 20)            BOOST_UUID_DETAIL_MD5_STEP(BOOST_UUID_DETAIL_MD5_G, a, b, c, d, BOOST_UUID_DETAIL_MD5_GET(9), 0x21e1cde6, 5)            BOOST_UUID_DETAIL_MD5_STEP(BOOST_UUID_DETAIL_MD5_G, d, a, b, c, BOOST_UUID_DETAIL_MD5_GET(14), 0xc33707d6, 9)            BOOST_UUID_DETAIL_MD5_STEP(BOOST_UUID_DETAIL_MD5_G, c, d, a, b, BOOST_UUID_DETAIL_MD5_GET(3), 0xf4d50d87, 14)            BOOST_UUID_DETAIL_MD5_STEP(BOOST_UUID_DETAIL_MD5_G, b, c, d, a, BOOST_UUID_DETAIL_MD5_GET(8), 0x455a14ed, 20)            BOOST_UUID_DETAIL_MD5_STEP(BOOST_UUID_DETAIL_MD5_G, a, b, c, d, BOOST_UUID_DETAIL_MD5_GET(13), 0xa9e3e905, 5)            BOOST_UUID_DETAIL_MD5_STEP(BOOST_UUID_DETAIL_MD5_G, d, a, b, c, BOOST_UUID_DETAIL_MD5_GET(2), 0xfcefa3f8, 9)            BOOST_UUID_DETAIL_MD5_STEP(BOOST_UUID_DETAIL_MD5_G, c, d, a, b, BOOST_UUID_DETAIL_MD5_GET(7), 0x676f02d9, 14)            BOOST_UUID_DETAIL_MD5_STEP(BOOST_UUID_DETAIL_MD5_G, b, c, d, a, BOOST_UUID_DETAIL_MD5_GET(12), 0x8d2a4c8a, 20)    /* Round 3 */            BOOST_UUID_DETAIL_MD5_STEP(BOOST_UUID_DETAIL_MD5_H, a, b, c, d, BOOST_UUID_DETAIL_MD5_GET(5), 0xfffa3942, 4)            BOOST_UUID_DETAIL_MD5_STEP(BOOST_UUID_DETAIL_MD5_H2, d, a, b, c, BOOST_UUID_DETAIL_MD5_GET(8), 0x8771f681, 11)            BOOST_UUID_DETAIL_MD5_STEP(BOOST_UUID_DETAIL_MD5_H, c, d, a, b, BOOST_UUID_DETAIL_MD5_GET(11), 0x6d9d6122, 16)            BOOST_UUID_DETAIL_MD5_STEP(BOOST_UUID_DETAIL_MD5_H2, b, c, d, a, BOOST_UUID_DETAIL_MD5_GET(14), 0xfde5380c, 23)            BOOST_UUID_DETAIL_MD5_STEP(BOOST_UUID_DETAIL_MD5_H, a, b, c, d, BOOST_UUID_DETAIL_MD5_GET(1), 0xa4beea44, 4)            BOOST_UUID_DETAIL_MD5_STEP(BOOST_UUID_DETAIL_MD5_H2, d, a, b, c, BOOST_UUID_DETAIL_MD5_GET(4), 0x4bdecfa9, 11)            BOOST_UUID_DETAIL_MD5_STEP(BOOST_UUID_DETAIL_MD5_H, c, d, a, b, BOOST_UUID_DETAIL_MD5_GET(7), 0xf6bb4b60, 16)            BOOST_UUID_DETAIL_MD5_STEP(BOOST_UUID_DETAIL_MD5_H2, b, c, d, a, BOOST_UUID_DETAIL_MD5_GET(10), 0xbebfbc70, 23)            BOOST_UUID_DETAIL_MD5_STEP(BOOST_UUID_DETAIL_MD5_H, a, b, c, d, BOOST_UUID_DETAIL_MD5_GET(13), 0x289b7ec6, 4)            BOOST_UUID_DETAIL_MD5_STEP(BOOST_UUID_DETAIL_MD5_H2, d, a, b, c, BOOST_UUID_DETAIL_MD5_GET(0), 0xeaa127fa, 11)            BOOST_UUID_DETAIL_MD5_STEP(BOOST_UUID_DETAIL_MD5_H, c, d, a, b, BOOST_UUID_DETAIL_MD5_GET(3), 0xd4ef3085, 16)            BOOST_UUID_DETAIL_MD5_STEP(BOOST_UUID_DETAIL_MD5_H2, b, c, d, a, BOOST_UUID_DETAIL_MD5_GET(6), 0x04881d05, 23)            BOOST_UUID_DETAIL_MD5_STEP(BOOST_UUID_DETAIL_MD5_H, a, b, c, d, BOOST_UUID_DETAIL_MD5_GET(9), 0xd9d4d039, 4)            BOOST_UUID_DETAIL_MD5_STEP(BOOST_UUID_DETAIL_MD5_H2, d, a, b, c, BOOST_UUID_DETAIL_MD5_GET(12), 0xe6db99e5, 11)            BOOST_UUID_DETAIL_MD5_STEP(BOOST_UUID_DETAIL_MD5_H, c, d, a, b, BOOST_UUID_DETAIL_MD5_GET(15), 0x1fa27cf8, 16)            BOOST_UUID_DETAIL_MD5_STEP(BOOST_UUID_DETAIL_MD5_H2, b, c, d, a, BOOST_UUID_DETAIL_MD5_GET(2), 0xc4ac5665, 23)    /* Round 4 */            BOOST_UUID_DETAIL_MD5_STEP(BOOST_UUID_DETAIL_MD5_I, a, b, c, d, BOOST_UUID_DETAIL_MD5_GET(0), 0xf4292244, 6)            BOOST_UUID_DETAIL_MD5_STEP(BOOST_UUID_DETAIL_MD5_I, d, a, b, c, BOOST_UUID_DETAIL_MD5_GET(7), 0x432aff97, 10)            BOOST_UUID_DETAIL_MD5_STEP(BOOST_UUID_DETAIL_MD5_I, c, d, a, b, BOOST_UUID_DETAIL_MD5_GET(14), 0xab9423a7, 15)            BOOST_UUID_DETAIL_MD5_STEP(BOOST_UUID_DETAIL_MD5_I, b, c, d, a, BOOST_UUID_DETAIL_MD5_GET(5), 0xfc93a039, 21)            BOOST_UUID_DETAIL_MD5_STEP(BOOST_UUID_DETAIL_MD5_I, a, b, c, d, BOOST_UUID_DETAIL_MD5_GET(12), 0x655b59c3, 6)            BOOST_UUID_DETAIL_MD5_STEP(BOOST_UUID_DETAIL_MD5_I, d, a, b, c, BOOST_UUID_DETAIL_MD5_GET(3), 0x8f0ccc92, 10)            BOOST_UUID_DETAIL_MD5_STEP(BOOST_UUID_DETAIL_MD5_I, c, d, a, b, BOOST_UUID_DETAIL_MD5_GET(10), 0xffeff47d, 15)            BOOST_UUID_DETAIL_MD5_STEP(BOOST_UUID_DETAIL_MD5_I, b, c, d, a, BOOST_UUID_DETAIL_MD5_GET(1), 0x85845dd1, 21)            BOOST_UUID_DETAIL_MD5_STEP(BOOST_UUID_DETAIL_MD5_I, a, b, c, d, BOOST_UUID_DETAIL_MD5_GET(8), 0x6fa87e4f, 6)            BOOST_UUID_DETAIL_MD5_STEP(BOOST_UUID_DETAIL_MD5_I, d, a, b, c, BOOST_UUID_DETAIL_MD5_GET(15), 0xfe2ce6e0, 10)            BOOST_UUID_DETAIL_MD5_STEP(BOOST_UUID_DETAIL_MD5_I, c, d, a, b, BOOST_UUID_DETAIL_MD5_GET(6), 0xa3014314, 15)            BOOST_UUID_DETAIL_MD5_STEP(BOOST_UUID_DETAIL_MD5_I, b, c, d, a, BOOST_UUID_DETAIL_MD5_GET(13), 0x4e0811a1, 21)            BOOST_UUID_DETAIL_MD5_STEP(BOOST_UUID_DETAIL_MD5_I, a, b, c, d, BOOST_UUID_DETAIL_MD5_GET(4), 0xf7537e82, 6)            BOOST_UUID_DETAIL_MD5_STEP(BOOST_UUID_DETAIL_MD5_I, d, a, b, c, BOOST_UUID_DETAIL_MD5_GET(11), 0xbd3af235, 10)            BOOST_UUID_DETAIL_MD5_STEP(BOOST_UUID_DETAIL_MD5_I, c, d, a, b, BOOST_UUID_DETAIL_MD5_GET(2), 0x2ad7d2bb, 15)            BOOST_UUID_DETAIL_MD5_STEP(BOOST_UUID_DETAIL_MD5_I, b, c, d, a, BOOST_UUID_DETAIL_MD5_GET(9), 0xeb86d391, 21)            a += saved_a;            b += saved_b;            c += saved_c;            d += saved_d;            ptr += 64;        } while (size -= 64);        ctx->a = a;        ctx->b = b;        ctx->c = c;        ctx->d = d;        return ptr;    }    void MD5_Init(MD5_CTX *ctx)    {        ctx->a = 0x67452301;        ctx->b = 0xefcdab89;        ctx->c = 0x98badcfe;        ctx->d = 0x10325476;        ctx->lo = 0;        ctx->hi = 0;    }    void MD5_Update(MD5_CTX *ctx, const void *data, unsigned long size)    {        MD5_u32plus saved_lo;        unsigned long used, available;        saved_lo = ctx->lo;        if ((ctx->lo = (saved_lo + size) & 0x1fffffff) < saved_lo)            ctx->hi++;        ctx->hi += size >> 29;        used = saved_lo & 0x3f;        if (used) {            available = 64 - used;            if (size < available) {                memcpy(&ctx->buffer[used], data, size);                return;            }            memcpy(&ctx->buffer[used], data, available);            data = (const unsigned char *)data + available;            size -= available;            body(ctx, ctx->buffer, 64);        }        if (size >= 64) {            data = body(ctx, data, size & ~(unsigned long)0x3f);            size &= 0x3f;        }        memcpy(ctx->buffer, data, size);    }    // This must remain consistent no matter the endianness    #define BOOST_UUID_DETAIL_MD5_OUT(dst, src) \        (dst)[0] = (unsigned char)(src); \        (dst)[1] = (unsigned char)((src) >> 8); \        (dst)[2] = (unsigned char)((src) >> 16); \        (dst)[3] = (unsigned char)((src) >> 24);    //    // A big-endian issue with MD5 results was resolved    // in boost 1.71.  If you generated md5 name-based uuids    // with boost 1.66 through 1.70 and stored them, then    // set the following compatibility flag to ensure that    // your hash generation remains consistent.    //#if defined(BOOST_UUID_COMPAT_PRE_1_71_MD5)    #define BOOST_UUID_DETAIL_MD5_BYTE_OUT(dst, src) \        BOOST_UUID_DETAIL_MD5_OUT(dst, src)#else    //    // We're copying into a byte buffer which is actually    // backed by an unsigned int array, which later on    // is then swabbed one more time by the basic name    // generator.  Therefore the logic here is reversed.    // This was done to minimize the impact to existing    // name-based hash generation.  The correct fix would    // be to make this and name generation endian-correct    // but that would even break previously generated sha1    // hashes too.    //#if BOOST_ENDIAN_LITTLE_BYTE    #define BOOST_UUID_DETAIL_MD5_BYTE_OUT(dst, src) \        (dst)[0] = (unsigned char)((src) >> 24); \        (dst)[1] = (unsigned char)((src) >> 16); \        (dst)[2] = (unsigned char)((src) >> 8); \        (dst)[3] = (unsigned char)(src);#else    #define BOOST_UUID_DETAIL_MD5_BYTE_OUT(dst, src) \        (dst)[0] = (unsigned char)(src); \        (dst)[1] = (unsigned char)((src) >> 8); \        (dst)[2] = (unsigned char)((src) >> 16); \        (dst)[3] = (unsigned char)((src) >> 24);#endif#endif // BOOST_UUID_COMPAT_PRE_1_71_MD5    void MD5_Final(unsigned char *result, MD5_CTX *ctx)    {        unsigned long used, available;        used = ctx->lo & 0x3f;        ctx->buffer[used++] = 0x80;        available = 64 - used;        if (available < 8) {            memset(&ctx->buffer[used], 0, available);            body(ctx, ctx->buffer, 64);            used = 0;            available = 64;        }        memset(&ctx->buffer[used], 0, available - 8);        ctx->lo <<= 3;        BOOST_UUID_DETAIL_MD5_OUT(&ctx->buffer[56], ctx->lo)        BOOST_UUID_DETAIL_MD5_OUT(&ctx->buffer[60], ctx->hi)        body(ctx, ctx->buffer, 64);        BOOST_UUID_DETAIL_MD5_BYTE_OUT(&result[0], ctx->a)        BOOST_UUID_DETAIL_MD5_BYTE_OUT(&result[4], ctx->b)        BOOST_UUID_DETAIL_MD5_BYTE_OUT(&result[8], ctx->c)        BOOST_UUID_DETAIL_MD5_BYTE_OUT(&result[12], ctx->d)        memset(ctx, 0, sizeof(*ctx));    }#undef BOOST_UUID_DETAIL_MD5_OUT#undef BOOST_UUID_DETAIL_MD5_SET#undef BOOST_UUID_DETAIL_MD5_GET#undef BOOST_UUID_DETAIL_MD5_STEP    MD5_CTX ctx_;};} // detail} // uuids} // boost#endif // BOOST_UUID_MD5_HPP
 |