| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682 | /* boost random/mersenne_twister.hpp header file * * Copyright Jens Maurer 2000-2001 * Copyright Steven Watanabe 2010 * Distributed under the Boost Software License, Version 1.0. (See * accompanying file LICENSE_1_0.txt or copy at * http://www.boost.org/LICENSE_1_0.txt) * * See http://www.boost.org for most recent version including documentation. * * $Id$ * * Revision history *  2013-10-14  fixed some warnings with Wshadow (mgaunard) *  2001-02-18  moved to individual header files */#ifndef BOOST_RANDOM_MERSENNE_TWISTER_HPP#define BOOST_RANDOM_MERSENNE_TWISTER_HPP#include <iosfwd>#include <istream>#include <stdexcept>#include <boost/config.hpp>#include <boost/cstdint.hpp>#include <boost/integer/integer_mask.hpp>#include <boost/random/detail/config.hpp>#include <boost/random/detail/ptr_helper.hpp>#include <boost/random/detail/seed.hpp>#include <boost/random/detail/seed_impl.hpp>#include <boost/random/detail/generator_seed_seq.hpp>#include <boost/random/detail/polynomial.hpp>#include <boost/random/detail/disable_warnings.hpp>namespace boost {namespace random {/** * Instantiations of class template mersenne_twister_engine model a * \pseudo_random_number_generator. It uses the algorithm described in * *  @blockquote *  "Mersenne Twister: A 623-dimensionally equidistributed uniform *  pseudo-random number generator", Makoto Matsumoto and Takuji Nishimura, *  ACM Transactions on Modeling and Computer Simulation: Special Issue on *  Uniform Random Number Generation, Vol. 8, No. 1, January 1998, pp. 3-30. *  @endblockquote * * @xmlnote * The boost variant has been implemented from scratch and does not * derive from or use mt19937.c provided on the above WWW site. However, it * was verified that both produce identical output. * @endxmlnote * * The seeding from an integer was changed in April 2005 to address a * <a href="http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html">weakness</a>. * * The quality of the generator crucially depends on the choice of the * parameters.  User code should employ one of the sensibly parameterized * generators such as \mt19937 instead. * * The generator requires considerable amounts of memory for the storage of * its state array. For example, \mt11213b requires about 1408 bytes and * \mt19937 requires about 2496 bytes. */template<class UIntType,         std::size_t w, std::size_t n, std::size_t m, std::size_t r,         UIntType a, std::size_t u, UIntType d, std::size_t s,         UIntType b, std::size_t t,         UIntType c, std::size_t l, UIntType f>class mersenne_twister_engine{public:    typedef UIntType result_type;    BOOST_STATIC_CONSTANT(std::size_t, word_size = w);    BOOST_STATIC_CONSTANT(std::size_t, state_size = n);    BOOST_STATIC_CONSTANT(std::size_t, shift_size = m);    BOOST_STATIC_CONSTANT(std::size_t, mask_bits = r);    BOOST_STATIC_CONSTANT(UIntType, xor_mask = a);    BOOST_STATIC_CONSTANT(std::size_t, tempering_u = u);    BOOST_STATIC_CONSTANT(UIntType, tempering_d = d);    BOOST_STATIC_CONSTANT(std::size_t, tempering_s = s);    BOOST_STATIC_CONSTANT(UIntType, tempering_b = b);    BOOST_STATIC_CONSTANT(std::size_t, tempering_t = t);    BOOST_STATIC_CONSTANT(UIntType, tempering_c = c);    BOOST_STATIC_CONSTANT(std::size_t, tempering_l = l);    BOOST_STATIC_CONSTANT(UIntType, initialization_multiplier = f);    BOOST_STATIC_CONSTANT(UIntType, default_seed = 5489u);    // backwards compatibility    BOOST_STATIC_CONSTANT(UIntType, parameter_a = a);    BOOST_STATIC_CONSTANT(std::size_t, output_u = u);    BOOST_STATIC_CONSTANT(std::size_t, output_s = s);    BOOST_STATIC_CONSTANT(UIntType, output_b = b);    BOOST_STATIC_CONSTANT(std::size_t, output_t = t);    BOOST_STATIC_CONSTANT(UIntType, output_c = c);    BOOST_STATIC_CONSTANT(std::size_t, output_l = l);    // old Boost.Random concept requirements    BOOST_STATIC_CONSTANT(bool, has_fixed_range = false);    /**     * Constructs a @c mersenne_twister_engine and calls @c seed().     */    mersenne_twister_engine() { seed(); }    /**     * Constructs a @c mersenne_twister_engine and calls @c seed(value).     */    BOOST_RANDOM_DETAIL_ARITHMETIC_CONSTRUCTOR(mersenne_twister_engine,                                               UIntType, value)    { seed(value); }    template<class It> mersenne_twister_engine(It& first, It last)    { seed(first,last); }    /**     * Constructs a mersenne_twister_engine and calls @c seed(gen).     *     * @xmlnote     * The copy constructor will always be preferred over     * the templated constructor.     * @endxmlnote     */    BOOST_RANDOM_DETAIL_SEED_SEQ_CONSTRUCTOR(mersenne_twister_engine,                                             SeedSeq, seq)    { seed(seq); }    // compiler-generated copy ctor and assignment operator are fine    /** Calls @c seed(default_seed). */    void seed() { seed(default_seed); }    /**     * Sets the state x(0) to v mod 2w. Then, iteratively,     * sets x(i) to     * (i + f * (x(i-1) xor (x(i-1) rshift w-2))) mod 2<sup>w</sup>     * for i = 1 .. n-1. x(n) is the first value to be returned by operator().     */    BOOST_RANDOM_DETAIL_ARITHMETIC_SEED(mersenne_twister_engine, UIntType, value)    {        // New seeding algorithm from        // http://www.math.sci.hiroshima-u.ac.jp/~m-mat/MT/MT2002/emt19937ar.html        // In the previous versions, MSBs of the seed affected only MSBs of the        // state x[].        const UIntType mask = (max)();        x[0] = value & mask;        for (i = 1; i < n; i++) {            // See Knuth "The Art of Computer Programming"            // Vol. 2, 3rd ed., page 106            x[i] = (f * (x[i-1] ^ (x[i-1] >> (w-2))) + i) & mask;        }        normalize_state();    }    /**     * Seeds a mersenne_twister_engine using values produced by seq.generate().     */    BOOST_RANDOM_DETAIL_SEED_SEQ_SEED(mersenne_twister_engine, SeeqSeq, seq)    {        detail::seed_array_int<w>(seq, x);        i = n;        normalize_state();    }    /** Sets the state of the generator using values from an iterator range. */    template<class It>    void seed(It& first, It last)    {        detail::fill_array_int<w>(first, last, x);        i = n;        normalize_state();    }    /** Returns the smallest value that the generator can produce. */    static result_type min BOOST_PREVENT_MACRO_SUBSTITUTION ()    { return 0; }    /** Returns the largest value that the generator can produce. */    static result_type max BOOST_PREVENT_MACRO_SUBSTITUTION ()    { return boost::low_bits_mask_t<w>::sig_bits; }    /** Produces the next value of the generator. */    result_type operator()();    /** Fills a range with random values */    template<class Iter>    void generate(Iter first, Iter last)    { detail::generate_from_int(*this, first, last); }    /**     * Advances the state of the generator by @c z steps.  Equivalent to     *     * @code     * for(unsigned long long i = 0; i < z; ++i) {     *     gen();     * }     * @endcode     */    void discard(boost::uintmax_t z)    {#ifndef BOOST_RANDOM_MERSENNE_TWISTER_DISCARD_THRESHOLD#define BOOST_RANDOM_MERSENNE_TWISTER_DISCARD_THRESHOLD 10000000#endif        if(z > BOOST_RANDOM_MERSENNE_TWISTER_DISCARD_THRESHOLD) {            discard_many(z);        } else {            for(boost::uintmax_t j = 0; j < z; ++j) {                (*this)();            }        }    }#ifndef BOOST_RANDOM_NO_STREAM_OPERATORS    /** Writes a mersenne_twister_engine to a @c std::ostream */    template<class CharT, class Traits>    friend std::basic_ostream<CharT,Traits>&    operator<<(std::basic_ostream<CharT,Traits>& os,               const mersenne_twister_engine& mt)    {        mt.print(os);        return os;    }    /** Reads a mersenne_twister_engine from a @c std::istream */    template<class CharT, class Traits>    friend std::basic_istream<CharT,Traits>&    operator>>(std::basic_istream<CharT,Traits>& is,               mersenne_twister_engine& mt)    {        for(std::size_t j = 0; j < mt.state_size; ++j)            is >> mt.x[j] >> std::ws;        // MSVC (up to 7.1) and Borland (up to 5.64) don't handle the template        // value parameter "n" available from the class template scope, so use        // the static constant with the same value        mt.i = mt.state_size;        return is;    }#endif    /**     * Returns true if the two generators are in the same state,     * and will thus produce identical sequences.     */    friend bool operator==(const mersenne_twister_engine& x_,                           const mersenne_twister_engine& y_)    {        if(x_.i < y_.i) return x_.equal_imp(y_);        else return y_.equal_imp(x_);    }    /**     * Returns true if the two generators are in different states.     */    friend bool operator!=(const mersenne_twister_engine& x_,                           const mersenne_twister_engine& y_)    { return !(x_ == y_); }private:    /// \cond show_private    void twist();    /**     * Does the work of operator==.  This is in a member function     * for portability.  Some compilers, such as msvc 7.1 and     * Sun CC 5.10 can't access template parameters or static     * members of the class from inline friend functions.     *     * requires i <= other.i     */    bool equal_imp(const mersenne_twister_engine& other) const    {        UIntType back[n];        std::size_t offset = other.i - i;        for(std::size_t j = 0; j + offset < n; ++j)            if(x[j] != other.x[j+offset])                return false;        rewind(&back[n-1], offset);        for(std::size_t j = 0; j < offset; ++j)            if(back[j + n - offset] != other.x[j])                return false;        return true;    }    /**     * Does the work of operator<<.  This is in a member function     * for portability.     */    template<class CharT, class Traits>    void print(std::basic_ostream<CharT, Traits>& os) const    {        UIntType data[n];        for(std::size_t j = 0; j < i; ++j) {            data[j + n - i] = x[j];        }        if(i != n) {            rewind(&data[n - i - 1], n - i);        }        os << data[0];        for(std::size_t j = 1; j < n; ++j) {            os << ' ' << data[j];        }    }    /**     * Copies z elements of the state preceding x[0] into     * the array whose last element is last.     */    void rewind(UIntType* last, std::size_t z) const    {        const UIntType upper_mask = (~static_cast<UIntType>(0)) << r;        const UIntType lower_mask = ~upper_mask;        UIntType y0 = x[m-1] ^ x[n-1];        if(y0 & (static_cast<UIntType>(1) << (w-1))) {            y0 = ((y0 ^ a) << 1) | 1;        } else {            y0 = y0 << 1;        }        for(std::size_t sz = 0; sz < z; ++sz) {            UIntType y1 =                rewind_find(last, sz, m-1) ^ rewind_find(last, sz, n-1);            if(y1 & (static_cast<UIntType>(1) << (w-1))) {                y1 = ((y1 ^ a) << 1) | 1;            } else {                y1 = y1 << 1;            }            *(last - sz) = (y0 & upper_mask) | (y1 & lower_mask);            y0 = y1;        }    }    /**     * Converts an arbitrary array into a valid generator state.     * First we normalize x[0], so that it contains the same     * value we would get by running the generator forwards     * and then in reverse.  (The low order r bits are redundant).     * Then, if the state consists of all zeros, we set the     * high order bit of x[0] to 1.  This function only needs to     * be called by seed, since the state transform preserves     * this relationship.     */    void normalize_state()    {        const UIntType upper_mask = (~static_cast<UIntType>(0)) << r;        const UIntType lower_mask = ~upper_mask;        UIntType y0 = x[m-1] ^ x[n-1];        if(y0 & (static_cast<UIntType>(1) << (w-1))) {            y0 = ((y0 ^ a) << 1) | 1;        } else {            y0 = y0 << 1;        }        x[0] = (x[0] & upper_mask) | (y0 & lower_mask);        // fix up the state if it's all zeroes.        for(std::size_t j = 0; j < n; ++j) {            if(x[j] != 0) return;        }        x[0] = static_cast<UIntType>(1) << (w-1);    }    /**     * Given a pointer to the last element of the rewind array,     * and the current size of the rewind array, finds an element     * relative to the next available slot in the rewind array.     */    UIntType    rewind_find(UIntType* last, std::size_t size, std::size_t j) const    {        std::size_t index = (j + n - size + n - 1) % n;        if(index < n - size) {            return x[index];        } else {            return *(last - (n - 1 - index));        }    }    /**     * Optimized algorithm for large jumps.     *     * Hiroshi Haramoto, Makoto Matsumoto, and Pierre L'Ecuyer. 2008.     * A Fast Jump Ahead Algorithm for Linear Recurrences in a Polynomial     * Space. In Proceedings of the 5th international conference on     * Sequences and Their Applications (SETA '08).     * DOI=10.1007/978-3-540-85912-3_26     */    void discard_many(boost::uintmax_t z)    {        // Compute the minimal polynomial, phi(t)        // This depends only on the transition function,        // which is constant.  The characteristic        // polynomial is the same as the minimal        // polynomial for a maximum period generator        // (which should be all specializations of        // mersenne_twister.)  Even if it weren't,        // the characteristic polynomial is guaranteed        // to be a multiple of the minimal polynomial,        // which is good enough.        detail::polynomial phi = get_characteristic_polynomial();        // calculate g(t) = t^z % phi(t)        detail::polynomial g = mod_pow_x(z, phi);        // h(s_0, t) = \sum_{i=0}^{2k-1}o(s_i)t^{2k-i-1}        detail::polynomial h;        const std::size_t num_bits = w*n - r;        for(std::size_t j = 0; j < num_bits * 2; ++j) {            // Yes, we're advancing the generator state            // here, but it doesn't matter because            // we're going to overwrite it completely            // in reconstruct_state.            if(i >= n) twist();            h[2*num_bits - j - 1] = x[i++] & UIntType(1);        }        // g(t)h(s_0, t)        detail::polynomial gh = g * h;        detail::polynomial result;        for(std::size_t j = 0; j <= num_bits; ++j) {            result[j] = gh[2*num_bits - j - 1];        }        reconstruct_state(result);    }    static detail::polynomial get_characteristic_polynomial()    {        const std::size_t num_bits = w*n - r;        detail::polynomial helper;        helper[num_bits - 1] = 1;        mersenne_twister_engine tmp;        tmp.reconstruct_state(helper);        // Skip the first num_bits elements, since we        // already know what they are.        for(std::size_t j = 0; j < num_bits; ++j) {            if(tmp.i >= n) tmp.twist();            if(j == num_bits - 1)                assert((tmp.x[tmp.i] & 1) == 1);            else                assert((tmp.x[tmp.i] & 1) == 0);            ++tmp.i;        }        detail::polynomial phi;        phi[num_bits] = 1;        detail::polynomial next_bits = tmp.as_polynomial(num_bits);        for(std::size_t j = 0; j < num_bits; ++j) {            int val = next_bits[j] ^ phi[num_bits-j-1];            phi[num_bits-j-1] = val;            if(val) {                for(std::size_t k = j + 1; k < num_bits; ++k) {                    phi[num_bits-k-1] ^= next_bits[k-j-1];                }            }        }        return phi;    }    detail::polynomial as_polynomial(std::size_t size) {        detail::polynomial result;        for(std::size_t j = 0; j < size; ++j) {            if(i >= n) twist();            result[j] = x[i++] & UIntType(1);        }        return result;    }    void reconstruct_state(const detail::polynomial& p)    {        const UIntType upper_mask = (~static_cast<UIntType>(0)) << r;        const UIntType lower_mask = ~upper_mask;        const std::size_t num_bits = w*n - r;        for(std::size_t j = num_bits - n + 1; j <= num_bits; ++j)            x[j % n] = p[j];        UIntType y0 = 0;        for(std::size_t j = num_bits + 1; j >= n - 1; --j) {            UIntType y1 = x[j % n] ^ x[(j + m) % n];            if(p[j - n + 1])                y1 = (y1 ^ a) << UIntType(1) | UIntType(1);            else                y1 = y1 << UIntType(1);            x[(j + 1) % n] = (y0 & upper_mask) | (y1 & lower_mask);            y0 = y1;        }        i = 0;    }    /// \endcond    // state representation: next output is o(x(i))    //   x[0]  ... x[k] x[k+1] ... x[n-1]   represents    //  x(i-k) ... x(i) x(i+1) ... x(i-k+n-1)    UIntType x[n];    std::size_t i;};/// \cond show_private#ifndef BOOST_NO_INCLASS_MEMBER_INITIALIZATION//  A definition is required even for integral static constants#define BOOST_RANDOM_MT_DEFINE_CONSTANT(type, name)                         \template<class UIntType, std::size_t w, std::size_t n, std::size_t m,       \    std::size_t r, UIntType a, std::size_t u, UIntType d, std::size_t s,    \    UIntType b, std::size_t t, UIntType c, std::size_t l, UIntType f>       \const type mersenne_twister_engine<UIntType,w,n,m,r,a,u,d,s,b,t,c,l,f>::nameBOOST_RANDOM_MT_DEFINE_CONSTANT(std::size_t, word_size);BOOST_RANDOM_MT_DEFINE_CONSTANT(std::size_t, state_size);BOOST_RANDOM_MT_DEFINE_CONSTANT(std::size_t, shift_size);BOOST_RANDOM_MT_DEFINE_CONSTANT(std::size_t, mask_bits);BOOST_RANDOM_MT_DEFINE_CONSTANT(UIntType, xor_mask);BOOST_RANDOM_MT_DEFINE_CONSTANT(std::size_t, tempering_u);BOOST_RANDOM_MT_DEFINE_CONSTANT(UIntType, tempering_d);BOOST_RANDOM_MT_DEFINE_CONSTANT(std::size_t, tempering_s);BOOST_RANDOM_MT_DEFINE_CONSTANT(UIntType, tempering_b);BOOST_RANDOM_MT_DEFINE_CONSTANT(std::size_t, tempering_t);BOOST_RANDOM_MT_DEFINE_CONSTANT(UIntType, tempering_c);BOOST_RANDOM_MT_DEFINE_CONSTANT(std::size_t, tempering_l);BOOST_RANDOM_MT_DEFINE_CONSTANT(UIntType, initialization_multiplier);BOOST_RANDOM_MT_DEFINE_CONSTANT(UIntType, default_seed);BOOST_RANDOM_MT_DEFINE_CONSTANT(UIntType, parameter_a);BOOST_RANDOM_MT_DEFINE_CONSTANT(std::size_t, output_u );BOOST_RANDOM_MT_DEFINE_CONSTANT(std::size_t, output_s);BOOST_RANDOM_MT_DEFINE_CONSTANT(UIntType, output_b);BOOST_RANDOM_MT_DEFINE_CONSTANT(std::size_t, output_t);BOOST_RANDOM_MT_DEFINE_CONSTANT(UIntType, output_c);BOOST_RANDOM_MT_DEFINE_CONSTANT(std::size_t, output_l);BOOST_RANDOM_MT_DEFINE_CONSTANT(bool, has_fixed_range);#undef BOOST_RANDOM_MT_DEFINE_CONSTANT#endiftemplate<class UIntType,         std::size_t w, std::size_t n, std::size_t m, std::size_t r,         UIntType a, std::size_t u, UIntType d, std::size_t s,         UIntType b, std::size_t t,         UIntType c, std::size_t l, UIntType f>voidmersenne_twister_engine<UIntType,w,n,m,r,a,u,d,s,b,t,c,l,f>::twist(){    const UIntType upper_mask = (~static_cast<UIntType>(0)) << r;    const UIntType lower_mask = ~upper_mask;    const std::size_t unroll_factor = 6;    const std::size_t unroll_extra1 = (n-m) % unroll_factor;    const std::size_t unroll_extra2 = (m-1) % unroll_factor;    // split loop to avoid costly modulo operations    {  // extra scope for MSVC brokenness w.r.t. for scope        for(std::size_t j = 0; j < n-m-unroll_extra1; j++) {            UIntType y = (x[j] & upper_mask) | (x[j+1] & lower_mask);            x[j] = x[j+m] ^ (y >> 1) ^ ((x[j+1]&1) * a);        }    }    {        for(std::size_t j = n-m-unroll_extra1; j < n-m; j++) {            UIntType y = (x[j] & upper_mask) | (x[j+1] & lower_mask);            x[j] = x[j+m] ^ (y >> 1) ^ ((x[j+1]&1) * a);        }    }    {        for(std::size_t j = n-m; j < n-1-unroll_extra2; j++) {            UIntType y = (x[j] & upper_mask) | (x[j+1] & lower_mask);            x[j] = x[j-(n-m)] ^ (y >> 1) ^ ((x[j+1]&1) * a);        }    }    {        for(std::size_t j = n-1-unroll_extra2; j < n-1; j++) {            UIntType y = (x[j] & upper_mask) | (x[j+1] & lower_mask);            x[j] = x[j-(n-m)] ^ (y >> 1) ^ ((x[j+1]&1) * a);        }    }    // last iteration    UIntType y = (x[n-1] & upper_mask) | (x[0] & lower_mask);    x[n-1] = x[m-1] ^ (y >> 1) ^ ((x[0]&1) * a);    i = 0;}/// \endcondtemplate<class UIntType,         std::size_t w, std::size_t n, std::size_t m, std::size_t r,         UIntType a, std::size_t u, UIntType d, std::size_t s,         UIntType b, std::size_t t,         UIntType c, std::size_t l, UIntType f>inline typenamemersenne_twister_engine<UIntType,w,n,m,r,a,u,d,s,b,t,c,l,f>::result_typemersenne_twister_engine<UIntType,w,n,m,r,a,u,d,s,b,t,c,l,f>::operator()(){    if(i == n)        twist();    // Step 4    UIntType z = x[i];    ++i;    z ^= ((z >> u) & d);    z ^= ((z << s) & b);    z ^= ((z << t) & c);    z ^= (z >> l);    return z;}/** * The specializations \mt11213b and \mt19937 are from * *  @blockquote *  "Mersenne Twister: A 623-dimensionally equidistributed *  uniform pseudo-random number generator", Makoto Matsumoto *  and Takuji Nishimura, ACM Transactions on Modeling and *  Computer Simulation: Special Issue on Uniform Random Number *  Generation, Vol. 8, No. 1, January 1998, pp. 3-30. *  @endblockquote */typedef mersenne_twister_engine<uint32_t,32,351,175,19,0xccab8ee7,    11,0xffffffff,7,0x31b6ab00,15,0xffe50000,17,1812433253> mt11213b;/** * The specializations \mt11213b and \mt19937 are from * *  @blockquote *  "Mersenne Twister: A 623-dimensionally equidistributed *  uniform pseudo-random number generator", Makoto Matsumoto *  and Takuji Nishimura, ACM Transactions on Modeling and *  Computer Simulation: Special Issue on Uniform Random Number *  Generation, Vol. 8, No. 1, January 1998, pp. 3-30. *  @endblockquote */typedef mersenne_twister_engine<uint32_t,32,624,397,31,0x9908b0df,    11,0xffffffff,7,0x9d2c5680,15,0xefc60000,18,1812433253> mt19937;#if !defined(BOOST_NO_INT64_T) && !defined(BOOST_NO_INTEGRAL_INT64_T)typedef mersenne_twister_engine<uint64_t,64,312,156,31,    UINT64_C(0xb5026f5aa96619e9),29,UINT64_C(0x5555555555555555),17,    UINT64_C(0x71d67fffeda60000),37,UINT64_C(0xfff7eee000000000),43,    UINT64_C(6364136223846793005)> mt19937_64;#endif/// \cond show_deprecatedtemplate<class UIntType,         int w, int n, int m, int r,         UIntType a, int u, std::size_t s,         UIntType b, int t,         UIntType c, int l, UIntType v>class mersenne_twister :    public mersenne_twister_engine<UIntType,        w, n, m, r, a, u, ~(UIntType)0, s, b, t, c, l, 1812433253>{    typedef mersenne_twister_engine<UIntType,        w, n, m, r, a, u, ~(UIntType)0, s, b, t, c, l, 1812433253> base_type;public:    mersenne_twister() {}    BOOST_RANDOM_DETAIL_GENERATOR_CONSTRUCTOR(mersenne_twister, Gen, gen)    { seed(gen); }    BOOST_RANDOM_DETAIL_ARITHMETIC_CONSTRUCTOR(mersenne_twister, UIntType, val)    { seed(val); }    template<class It>    mersenne_twister(It& first, It last) : base_type(first, last) {}    void seed() { base_type::seed(); }    BOOST_RANDOM_DETAIL_GENERATOR_SEED(mersenne_twister, Gen, gen)    {        detail::generator_seed_seq<Gen> seq(gen);        base_type::seed(seq);    }    BOOST_RANDOM_DETAIL_ARITHMETIC_SEED(mersenne_twister, UIntType, val)    { base_type::seed(val); }    template<class It>    void seed(It& first, It last) { base_type::seed(first, last); }};/// \endcond} // namespace randomusing random::mt11213b;using random::mt19937;using random::mt19937_64;} // namespace boostBOOST_RANDOM_PTR_HELPER_SPEC(boost::mt11213b)BOOST_RANDOM_PTR_HELPER_SPEC(boost::mt19937)BOOST_RANDOM_PTR_HELPER_SPEC(boost::mt19937_64)#include <boost/random/detail/enable_warnings.hpp>#endif // BOOST_RANDOM_MERSENNE_TWISTER_HPP
 |