namespace VisualMath.Accord.Math.Decompositions { using System; using VisualMath.Accord.Math; /// /// Determines the eigenvalues and eigenvectors of a real square matrix. /// /// /// /// In the mathematical discipline of linear algebra, eigendecomposition /// or sometimes spectral decomposition is the factorization of a matrix /// into a canonical form, whereby the matrix is represented in terms of /// its eigenvalues and eigenvectors. /// /// If A is symmetric, then A = V * D * V' and A = V * V' /// where the eigenvalue matrix D is diagonal and the eigenvector matrix V is orthogonal. /// If A is not symmetric, the eigenvalue matrix D is block diagonal /// with the real eigenvalues in 1-by-1 blocks and any complex eigenvalues, /// lambda + i*mu, in 2-by-2 blocks, [lambda, mu; -mu, lambda]. /// The columns of V represent the eigenvectors in the sense that A * V = V * D. /// The matrix V may be badly conditioned, or even singular, so the validity of the equation /// A = V * D * inverse(V) depends upon the condition of V. /// /// public sealed class EigenvalueDecomposition { private int n; // matrix dimension private double[] d, e; // storage of eigenvalues. private double[,] V; // storage of eigenvectors. private double[,] H; // storage of nonsymmetric Hessenberg form. private double[] ort; // storage for nonsymmetric algorithm. private double cdivr, cdivi; private bool symmetric; /// Construct an eigenvalue decomposition. public EigenvalueDecomposition(double[,] value) : this(value, value.IsSymmetric()) { } /// Construct an eigenvalue decomposition. public EigenvalueDecomposition(double[,] value, bool assumeSymmetric) { if (value == null) { throw new ArgumentNullException("value", "Matrix cannot be null."); } if (value.GetLength(0) != value.GetLength(1)) { throw new ArgumentException("Matrix is not a square matrix.", "value"); } n = value.GetLength(1); V = new double[n, n]; d = new double[n]; e = new double[n]; this.symmetric = assumeSymmetric; if (this.symmetric) { for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) V[i, j] = value[i, j]; // Tridiagonalize. this.tred2(); // Diagonalize. this.tql2(); } else { H = new double[n, n]; ort = new double[n]; for (int j = 0; j < n; j++) for (int i = 0; i < n; i++) H[i, j] = value[i, j]; // Reduce to Hessenberg form. this.orthes(); // Reduce Hessenberg to real Schur form. this.hqr2(); } } private void tred2() { // Symmetric Householder reduction to tridiagonal form. // This is derived from the Algol procedures tred2 by Bowdler, Martin, Reinsch, and Wilkinson, // Handbook for Auto. Comp., Vol.ii-Linear Algebra, and the corresponding Fortran subroutine in EISPACK. for (int j = 0; j < n; j++) d[j] = V[n - 1, j]; // Householder reduction to tridiagonal form. for (int i = n - 1; i > 0; i--) { // Scale to avoid under/overflow. double scale = 0.0; double h = 0.0; for (int k = 0; k < i; k++) scale = scale + System.Math.Abs(d[k]); if (scale == 0.0) { e[i] = d[i - 1]; for (int j = 0; j < i; j++) { d[j] = V[i - 1, j]; V[i, j] = 0.0; V[j, i] = 0.0; } } else { // Generate Householder vector. for (int k = 0; k < i; k++) { d[k] /= scale; h += d[k] * d[k]; } double f = d[i - 1]; double g = System.Math.Sqrt(h); if (f > 0) g = -g; e[i] = scale * g; h = h - f * g; d[i - 1] = f - g; for (int j = 0; j < i; j++) e[j] = 0.0; // Apply similarity transformation to remaining columns. for (int j = 0; j < i; j++) { f = d[j]; V[j, i] = f; g = e[j] + V[j, j] * f; for (int k = j + 1; k <= i - 1; k++) { g += V[k, j] * d[k]; e[k] += V[k, j] * f; } e[j] = g; } f = 0.0; for (int j = 0; j < i; j++) { e[j] /= h; f += e[j] * d[j]; } double hh = f / (h + h); for (int j = 0; j < i; j++) e[j] -= hh * d[j]; for (int j = 0; j < i; j++) { f = d[j]; g = e[j]; for (int k = j; k <= i - 1; k++) V[k, j] -= (f * e[k] + g * d[k]); d[j] = V[i - 1, j]; V[i, j] = 0.0; } } d[i] = h; } // Accumulate transformations. for (int i = 0; i < n - 1; i++) { V[n - 1, i] = V[i, i]; V[i, i] = 1.0; double h = d[i + 1]; if (h != 0.0) { for (int k = 0; k <= i; k++) d[k] = V[k, i + 1] / h; for (int j = 0; j <= i; j++) { double g = 0.0; for (int k = 0; k <= i; k++) g += V[k, i + 1] * V[k, j]; for (int k = 0; k <= i; k++) V[k, j] -= g * d[k]; } } for (int k = 0; k <= i; k++) V[k, i + 1] = 0.0; } for (int j = 0; j < n; j++) { d[j] = V[n - 1, j]; V[n - 1, j] = 0.0; } V[n - 1, n - 1] = 1.0; e[0] = 0.0; } private void tql2() { // Symmetric tridiagonal QL algorithm. // This is derived from the Algol procedures tql2, by Bowdler, Martin, Reinsch, and Wilkinson, // Handbook for Auto. Comp., Vol.ii-Linear Algebra, and the corresponding Fortran subroutine in EISPACK. for (int i = 1; i < n; i++) e[i - 1] = e[i]; e[n - 1] = 0.0; double f = 0.0; double tst1 = 0.0; double eps = System.Math.Pow(2.0, -52.0); for (int l = 0; l < n; l++) { // Find small subdiagonal element. tst1 = System.Math.Max(tst1, System.Math.Abs(d[l]) + System.Math.Abs(e[l])); int m = l; while (m < n) { if (System.Math.Abs(e[m]) <= eps * tst1) break; m++; } // If m == l, d[l] is an eigenvalue, otherwise, iterate. if (m > l) { int iter = 0; do { iter = iter + 1; // (Could check iteration count here.) // Compute implicit shift double g = d[l]; double p = (d[l + 1] - g) / (2.0 * e[l]); double r = Accord.Math.Tools.Hypotenuse(p, 1.0); if (p < 0) { r = -r; } d[l] = e[l] / (p + r); d[l + 1] = e[l] * (p + r); double dl1 = d[l + 1]; double h = g - d[l]; for (int i = l + 2; i < n; i++) { d[i] -= h; } f = f + h; // Implicit QL transformation. p = d[m]; double c = 1.0; double c2 = c; double c3 = c; double el1 = e[l + 1]; double s = 0.0; double s2 = 0.0; for (int i = m - 1; i >= l; i--) { c3 = c2; c2 = c; s2 = s; g = c * e[i]; h = c * p; r = Accord.Math.Tools.Hypotenuse(p, e[i]); e[i + 1] = s * r; s = e[i] / r; c = p / r; p = c * d[i] - s * g; d[i + 1] = h + s * (c * g + s * d[i]); // Accumulate transformation. for (int k = 0; k < n; k++) { h = V[k, i + 1]; V[k, i + 1] = s * V[k, i] + c * h; V[k, i] = c * V[k, i] - s * h; } } p = -s * s2 * c3 * el1 * e[l] / dl1; e[l] = s * p; d[l] = c * p; // Check for convergence. } while (System.Math.Abs(e[l]) > eps * tst1); } d[l] = d[l] + f; e[l] = 0.0; } // Sort eigenvalues and corresponding vectors. for (int i = 0; i < n - 1; i++) { int k = i; double p = d[i]; for (int j = i + 1; j < n; j++) { if (d[j] < p) { k = j; p = d[j]; } } if (k != i) { d[k] = d[i]; d[i] = p; for (int j = 0; j < n; j++) { p = V[j, i]; V[j, i] = V[j, k]; V[j, k] = p; } } } } private void orthes() { // Nonsymmetric reduction to Hessenberg form. // This is derived from the Algol procedures orthes and ortran, by Martin and Wilkinson, // Handbook for Auto. Comp., Vol.ii-Linear Algebra, and the corresponding Fortran subroutines in EISPACK. int low = 0; int high = n - 1; for (int m = low + 1; m <= high - 1; m++) { // Scale column. double scale = 0.0; for (int i = m; i <= high; i++) scale = scale + System.Math.Abs(H[i, m - 1]); if (scale != 0.0) { // Compute Householder transformation. double h = 0.0; for (int i = high; i >= m; i--) { ort[i] = H[i, m - 1] / scale; h += ort[i] * ort[i]; } double g = System.Math.Sqrt(h); if (ort[m] > 0) g = -g; h = h - ort[m] * g; ort[m] = ort[m] - g; // Apply Householder similarity transformation // H = (I - u * u' / h) * H * (I - u * u') / h) for (int j = m; j < n; j++) { double f = 0.0; for (int i = high; i >= m; i--) f += ort[i] * H[i, j]; f = f / h; for (int i = m; i <= high; i++) H[i, j] -= f * ort[i]; } for (int i = 0; i <= high; i++) { double f = 0.0; for (int j = high; j >= m; j--) f += ort[j] * H[i, j]; f = f / h; for (int j = m; j <= high; j++) H[i, j] -= f * ort[j]; } ort[m] = scale * ort[m]; H[m, m - 1] = scale * g; } } // Accumulate transformations (Algol's ortran). for (int i = 0; i < n; i++) for (int j = 0; j < n; j++) V[i, j] = (i == j ? 1.0 : 0.0); for (int m = high - 1; m >= low + 1; m--) { if (H[m, m - 1] != 0.0) { for (int i = m + 1; i <= high; i++) ort[i] = H[i, m - 1]; for (int j = m; j <= high; j++) { double g = 0.0; for (int i = m; i <= high; i++) g += ort[i] * V[i, j]; // Double division avoids possible underflow. g = (g / ort[m]) / H[m, m - 1]; for (int i = m; i <= high; i++) V[i, j] += g * ort[i]; } } } } private void cdiv(double xr, double xi, double yr, double yi) { // Complex scalar division. double r; double d; if (System.Math.Abs(yr) > System.Math.Abs(yi)) { r = yi / yr; d = yr + r * yi; cdivr = (xr + r * xi) / d; cdivi = (xi - r * xr) / d; } else { r = yr / yi; d = yi + r * yr; cdivr = (r * xr + xi) / d; cdivi = (r * xi - xr) / d; } } private void hqr2() { // Nonsymmetric reduction from Hessenberg to real Schur form. // This is derived from the Algol procedure hqr2, by Martin and Wilkinson, Handbook for Auto. Comp., // Vol.ii-Linear Algebra, and the corresponding Fortran subroutine in EISPACK. int nn = this.n; int n = nn - 1; int low = 0; int high = nn - 1; double eps = System.Math.Pow(2.0, -52.0); double exshift = 0.0; double p = 0; double q = 0; double r = 0; double s = 0; double z = 0; double t; double w; double x; double y; // Store roots isolated by balanc and compute matrix norm double norm = 0.0; for (int i = 0; i < nn; i++) { if (i < low | i > high) { d[i] = H[i, i]; e[i] = 0.0; } for (int j = System.Math.Max(i - 1, 0); j < nn; j++) norm = norm + System.Math.Abs(H[i, j]); } // Outer loop over eigenvalue index int iter = 0; while (n >= low) { // Look for single small sub-diagonal element int l = n; while (l > low) { s = System.Math.Abs(H[l - 1, l - 1]) + System.Math.Abs(H[l, l]); if (s == 0.0) s = norm; if (System.Math.Abs(H[l, l - 1]) < eps * s) break; l--; } // Check for convergence if (l == n) { // One root found H[n, n] = H[n, n] + exshift; d[n] = H[n, n]; e[n] = 0.0; n--; iter = 0; } else if (l == n - 1) { // Two roots found w = H[n, n - 1] * H[n - 1, n]; p = (H[n - 1, n - 1] - H[n, n]) / 2.0; q = p * p + w; z = System.Math.Sqrt(System.Math.Abs(q)); H[n, n] = H[n, n] + exshift; H[n - 1, n - 1] = H[n - 1, n - 1] + exshift; x = H[n, n]; if (q >= 0) { // Real pair z = (p >= 0) ? (p + z) : (p - z); d[n - 1] = x + z; d[n] = d[n - 1]; if (z != 0.0) d[n] = x - w / z; e[n - 1] = 0.0; e[n] = 0.0; x = H[n, n - 1]; s = System.Math.Abs(x) + System.Math.Abs(z); p = x / s; q = z / s; r = System.Math.Sqrt(p * p + q * q); p = p / r; q = q / r; // Row modification for (int j = n - 1; j < nn; j++) { z = H[n - 1, j]; H[n - 1, j] = q * z + p * H[n, j]; H[n, j] = q * H[n, j] - p * z; } // Column modification for (int i = 0; i <= n; i++) { z = H[i, n - 1]; H[i, n - 1] = q * z + p * H[i, n]; H[i, n] = q * H[i, n] - p * z; } // Accumulate transformations for (int i = low; i <= high; i++) { z = V[i, n - 1]; V[i, n - 1] = q * z + p * V[i, n]; V[i, n] = q * V[i, n] - p * z; } } else { // Complex pair d[n - 1] = x + p; d[n] = x + p; e[n - 1] = z; e[n] = -z; } n = n - 2; iter = 0; } else { // No convergence yet // Form shift x = H[n, n]; y = 0.0; w = 0.0; if (l < n) { y = H[n - 1, n - 1]; w = H[n, n - 1] * H[n - 1, n]; } // Wilkinson's original ad hoc shift if (iter == 10) { exshift += x; for (int i = low; i <= n; i++) H[i, i] -= x; s = System.Math.Abs(H[n, n - 1]) + System.Math.Abs(H[n - 1, n - 2]); x = y = 0.75 * s; w = -0.4375 * s * s; } // MATLAB's new ad hoc shift if (iter == 30) { s = (y - x) / 2.0; s = s * s + w; if (s > 0) { s = System.Math.Sqrt(s); if (y < x) s = -s; s = x - w / ((y - x) / 2.0 + s); for (int i = low; i <= n; i++) H[i, i] -= s; exshift += s; x = y = w = 0.964; } } iter = iter + 1; // Look for two consecutive small sub-diagonal elements int m = n - 2; while (m >= l) { z = H[m, m]; r = x - z; s = y - z; p = (r * s - w) / H[m + 1, m] + H[m, m + 1]; q = H[m + 1, m + 1] - z - r - s; r = H[m + 2, m + 1]; s = System.Math.Abs(p) + System.Math.Abs(q) + System.Math.Abs(r); p = p / s; q = q / s; r = r / s; if (m == l) break; if (System.Math.Abs(H[m, m - 1]) * (System.Math.Abs(q) + System.Math.Abs(r)) < eps * (System.Math.Abs(p) * (System.Math.Abs(H[m - 1, m - 1]) + System.Math.Abs(z) + System.Math.Abs(H[m + 1, m + 1])))) break; m--; } for (int i = m + 2; i <= n; i++) { H[i, i - 2] = 0.0; if (i > m + 2) H[i, i - 3] = 0.0; } // Double QR step involving rows l:n and columns m:n for (int k = m; k <= n - 1; k++) { bool notlast = (k != n - 1); if (k != m) { p = H[k, k - 1]; q = H[k + 1, k - 1]; r = (notlast ? H[k + 2, k - 1] : 0.0); x = System.Math.Abs(p) + System.Math.Abs(q) + System.Math.Abs(r); if (x != 0.0) { p = p / x; q = q / x; r = r / x; } } if (x == 0.0) break; s = System.Math.Sqrt(p * p + q * q + r * r); if (p < 0) s = -s; if (s != 0) { if (k != m) H[k, k - 1] = -s * x; else if (l != m) H[k, k - 1] = -H[k, k - 1]; p = p + s; x = p / s; y = q / s; z = r / s; q = q / p; r = r / p; // Row modification for (int j = k; j < nn; j++) { p = H[k, j] + q * H[k + 1, j]; if (notlast) { p = p + r * H[k + 2, j]; H[k + 2, j] = H[k + 2, j] - p * z; } H[k, j] = H[k, j] - p * x; H[k + 1, j] = H[k + 1, j] - p * y; } // Column modification for (int i = 0; i <= System.Math.Min(n, k + 3); i++) { p = x * H[i, k] + y * H[i, k + 1]; if (notlast) { p = p + z * H[i, k + 2]; H[i, k + 2] = H[i, k + 2] - p * r; } H[i, k] = H[i, k] - p; H[i, k + 1] = H[i, k + 1] - p * q; } // Accumulate transformations for (int i = low; i <= high; i++) { p = x * V[i, k] + y * V[i, k + 1]; if (notlast) { p = p + z * V[i, k + 2]; V[i, k + 2] = V[i, k + 2] - p * r; } V[i, k] = V[i, k] - p; V[i, k + 1] = V[i, k + 1] - p * q; } } } } } // Backsubstitute to find vectors of upper triangular form if (norm == 0.0) { return; } for (n = nn - 1; n >= 0; n--) { p = d[n]; q = e[n]; // Real vector if (q == 0) { int l = n; H[n, n] = 1.0; for (int i = n - 1; i >= 0; i--) { w = H[i, i] - p; r = 0.0; for (int j = l; j <= n; j++) r = r + H[i, j] * H[j, n]; if (e[i] < 0.0) { z = w; s = r; } else { l = i; if (e[i] == 0.0) { H[i, n] = (w != 0.0) ? (-r / w) : (-r / (eps * norm)); } else { // Solve real equations x = H[i, i + 1]; y = H[i + 1, i]; q = (d[i] - p) * (d[i] - p) + e[i] * e[i]; t = (x * s - z * r) / q; H[i, n] = t; H[i + 1, n] = (System.Math.Abs(x) > System.Math.Abs(z)) ? ((-r - w * t) / x) : ((-s - y * t) / z); } // Overflow control t = System.Math.Abs(H[i, n]); if ((eps * t) * t > 1) for (int j = i; j <= n; j++) H[j, n] = H[j, n] / t; } } } else if (q < 0) { // Complex vector int l = n - 1; // Last vector component imaginary so matrix is triangular if (System.Math.Abs(H[n, n - 1]) > System.Math.Abs(H[n - 1, n])) { H[n - 1, n - 1] = q / H[n, n - 1]; H[n - 1, n] = -(H[n, n] - p) / H[n, n - 1]; } else { cdiv(0.0, -H[n - 1, n], H[n - 1, n - 1] - p, q); H[n - 1, n - 1] = cdivr; H[n - 1, n] = cdivi; } H[n, n - 1] = 0.0; H[n, n] = 1.0; for (int i = n - 2; i >= 0; i--) { double ra, sa, vr, vi; ra = 0.0; sa = 0.0; for (int j = l; j <= n; j++) { ra = ra + H[i, j] * H[j, n - 1]; sa = sa + H[i, j] * H[j, n]; } w = H[i, i] - p; if (e[i] < 0.0) { z = w; r = ra; s = sa; } else { l = i; if (e[i] == 0) { cdiv(-ra, -sa, w, q); H[i, n - 1] = cdivr; H[i, n] = cdivi; } else { // Solve complex equations x = H[i, i + 1]; y = H[i + 1, i]; vr = (d[i] - p) * (d[i] - p) + e[i] * e[i] - q * q; vi = (d[i] - p) * 2.0 * q; if (vr == 0.0 & vi == 0.0) vr = eps * norm * (System.Math.Abs(w) + System.Math.Abs(q) + System.Math.Abs(x) + System.Math.Abs(y) + System.Math.Abs(z)); cdiv(x * r - z * ra + q * sa, x * s - z * sa - q * ra, vr, vi); H[i, n - 1] = cdivr; H[i, n] = cdivi; if (System.Math.Abs(x) > (System.Math.Abs(z) + System.Math.Abs(q))) { H[i + 1, n - 1] = (-ra - w * H[i, n - 1] + q * H[i, n]) / x; H[i + 1, n] = (-sa - w * H[i, n] - q * H[i, n - 1]) / x; } else { cdiv(-r - y * H[i, n - 1], -s - y * H[i, n], z, q); H[i + 1, n - 1] = cdivr; H[i + 1, n] = cdivi; } } // Overflow control t = System.Math.Max(System.Math.Abs(H[i, n - 1]), System.Math.Abs(H[i, n])); if ((eps * t) * t > 1) for (int j = i; j <= n; j++) { H[j, n - 1] = H[j, n - 1] / t; H[j, n] = H[j, n] / t; } } } } } // Vectors of isolated roots for (int i = 0; i < nn; i++) if (i < low | i > high) for (int j = i; j < nn; j++) V[i, j] = H[i, j]; // Back transformation to get eigenvectors of original matrix for (int j = nn - 1; j >= low; j--) for (int i = low; i <= high; i++) { z = 0.0; for (int k = low; k <= System.Math.Min(j, high); k++) z = z + V[i, k] * H[k, j]; V[i, j] = z; } } /// Returns the real parts of the eigenvalues. public double[] RealEigenvalues { get { return this.d; } } /// Returns the imaginary parts of the eigenvalues. public double[] ImaginaryEigenvalues { get { return this.e; } } /// Returns the eigenvector matrix. public double[,] Eigenvectors { get { return this.V; } } /// Returns the block diagonal eigenvalue matrix. public double[,] DiagonalMatrix { get { double[,] x = new double[n, n]; for (int i = 0; i < n; i++) { for (int j = 0; j < n; j++) x[i, j] = 0.0; x[i, i] = d[i]; if (e[i] > 0) { x[i, i + 1] = e[i]; } else if (e[i] < 0) { x[i, i - 1] = e[i]; } } return x; } } } }