using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
namespace VisualMath.Accord.Math.Decompositions
{
using System;
using VisualMath.Accord.Math;
///
/// QR decomposition for a rectangular matrix.
///
///
///
/// For an m-by-n matrix A with m >= n, the QR decomposition
/// is an m-by-n orthogonal matrix Q and an n-by-n upper triangular
/// matrix R so that A = Q * R.
///
/// The QR decomposition always exists, even if the matrix does not have
/// full rank, so the constructor will never fail. The primary use of the
/// QR decomposition is in the least squares solution of nonsquare systems
/// of simultaneous linear equations.
/// This will fail if returns .
///
///
public sealed class QrDecomposition
{
private double[,] qr;
private double[] Rdiag;
/// Constructs a QR decomposition.
/// The matrix A to be decomposed.
public QrDecomposition(double[,] value)
: this(value, false)
{
}
/// Constructs a QR decomposition.
/// The matrix A to be decomposed.
/// True if the decomposition should be performed on
/// the transpose of A rather than A itself, false otherwise. Default is false.
public QrDecomposition(double[,] value, bool transpose)
{
if (value == null)
{
throw new ArgumentNullException("value", "Matrix cannot be null.");
}
if ((!transpose && value.GetLength(0) < value.GetLength(1)) ||
(transpose && value.GetLength(1) < value.GetLength(0)))
{
throw new ArgumentException("Matrix has more columns than rows.", "value");
}
this.qr = transpose ? value.Transpose() : (double[,])value.Clone();
int rows = qr.GetLength(0);
int cols = qr.GetLength(1);
this.Rdiag = new double[cols];
for (int k = 0; k < cols; k++)
{
// Compute 2-norm of k-th column without under/overflow.
double nrm = 0;
for (int i = k; i < rows; i++)
{
nrm = Tools.Hypotenuse(nrm, qr[i, k]);
}
if (nrm != 0.0)
{
// Form k-th Householder vector.
if (qr[k, k] < 0)
{
nrm = -nrm;
}
for (int i = k; i < rows; i++)
{
qr[i, k] /= nrm;
}
qr[k, k] += 1.0;
// Apply transformation to remaining columns.
for (int j = k + 1; j < cols; j++)
{
double s = 0.0;
for (int i = k; i < rows; i++)
{
s += qr[i, k] * qr[i, j];
}
s = -s / qr[k, k];
for (int i = k; i < rows; i++)
{
qr[i, j] += s * qr[i, k];
}
}
}
this.Rdiag[k] = -nrm;
}
}
/// Least squares solution of A * X = B
/// Right-hand-side matrix with as many rows as A and any number of columns.
/// A matrix that minimized the two norm of Q * R * X - B.
/// Matrix row dimensions must be the same.
/// Matrix is rank deficient.
public double[,] Solve(double[,] value)
{
if (value == null)
throw new ArgumentNullException("value", "Matrix cannot be null.");
if (value.GetLength(0) != qr.GetLength(0))
throw new ArgumentException("Matrix row dimensions must agree.");
if (!this.FullRank)
throw new InvalidOperationException("Matrix is rank deficient.");
// Copy right hand side
int count = value.GetLength(1);
double[,] X = (double[,])value.Clone();
int m = qr.GetLength(0);
int n = qr.GetLength(1);
// Compute Y = transpose(Q)*B
for (int k = 0; k < n; k++)
{
for (int j = 0; j < count; j++)
{
double s = 0.0;
for (int i = k; i < m; i++)
s += qr[i, k] * X[i, j];
s = -s / qr[k, k];
for (int i = k; i < m; i++)
X[i, j] += s * qr[i, k];
}
}
// Solve R*X = Y;
for (int k = n - 1; k >= 0; k--)
{
for (int j = 0; j < count; j++)
X[k, j] /= Rdiag[k];
for (int i = 0; i < k; i++)
for (int j = 0; j < count; j++)
X[i, j] -= X[k, j] * qr[i, k];
}
double[,] r = new double[n, count];
for (int i = 0; i < n; i++)
for (int j = 0; j < count; j++)
r[i, j] = X[i, j];
return r;
}
/// Least squares solution of X * A = B
/// Right-hand-side matrix with as many columns as A and any number of rows.
/// A matrix that minimized the two norm of X * Q * R - B.
/// Matrix column dimensions must be the same.
/// Matrix is rank deficient.
public double[,] SolveTranspose(double[,] value)
{
if (value == null)
throw new ArgumentNullException("value", "Matrix cannot be null.");
if (value.GetLength(1) != qr.GetLength(0))
throw new ArgumentException("Matrix row dimensions must agree.");
if (!this.FullRank)
throw new InvalidOperationException("Matrix is rank deficient.");
// Copy right hand side
int count = value.GetLength(0);
double[,] X = value.Transpose();
int m = qr.GetLength(0);
int n = qr.GetLength(1);
// Compute Y = transpose(Q)*B
for (int k = 0; k < n; k++)
{
for (int j = 0; j < count; j++)
{
double s = 0.0;
for (int i = k; i < m; i++)
s += qr[i, k] * X[i, j];
s = -s / qr[k, k];
for (int i = k; i < m; i++)
X[i, j] += s * qr[i, k];
}
}
// Solve R*X = Y;
for (int k = n - 1; k >= 0; k--)
{
for (int j = 0; j < count; j++)
X[k, j] /= Rdiag[k];
for (int i = 0; i < k; i++)
for (int j = 0; j < count; j++)
X[i, j] -= X[k, j] * qr[i, k];
}
double[,] r = new double[count, n];
for (int i = 0; i < n; i++)
for (int j = 0; j < count; j++)
r[j, i] = X[i, j];
return r;
}
/// Least squares solution of A * X = B
/// Right-hand-side matrix with as many rows as A and any number of columns.
/// A matrix that minimized the two norm of Q * R * X - B.
/// Matrix row dimensions must be the same.
/// Matrix is rank deficient.
public double[] Solve(double[] value)
{
if (value == null)
throw new ArgumentNullException("value");
if (value.GetLength(0) != qr.GetLength(0))
throw new ArgumentException("Matrix row dimensions must agree.");
if (!this.FullRank)
throw new InvalidOperationException("Matrix is rank deficient.");
// Copy right hand side
double[] X = (double[])value.Clone();
int m = qr.GetLength(0);
int n = qr.GetLength(1);
// Compute Y = transpose(Q)*B
for (int k = 0; k < n; k++)
{
double s = 0.0;
for (int i = k; i < m; i++)
s += qr[i, k] * X[i];
s = -s / qr[k, k];
for (int i = k; i < m; i++)
X[i] += s * qr[i, k];
}
// Solve R*X = Y;
for (int k = n - 1; k >= 0; k--)
{
X[k] /= Rdiag[k];
for (int i = 0; i < k; i++)
X[i] -= X[k] * qr[i, k];
}
return X;
}
/// Shows if the matrix A is of full rank.
/// The value is if R, and hence A, has full rank.
public bool FullRank
{
get
{
int columns = qr.GetLength(1);
for (int i = 0; i < columns; i++)
{
if (this.Rdiag[i] == 0)
{
return false;
}
}
return true;
}
}
/// Returns the upper triangular factor R.
public double[,] UpperTriangularFactor
{
get
{
int n = this.qr.GetLength(1);
double[,] x = new double[n, n];
for (int i = 0; i < n; i++)
{
for (int j = 0; j < n; j++)
{
if (i < j)
{
x[i, j] = qr[i, j];
}
else if (i == j)
{
x[i, j] = Rdiag[i];
}
else
{
x[i, j] = 0.0;
}
}
}
return x;
}
}
/// Returns the orthogonal factor Q.
public double[,] OrthogonalFactor
{
get
{
int rows = qr.GetLength(0);
int cols = qr.GetLength(1);
double[,] x = new double[rows, cols];
for (int k = cols - 1; k >= 0; k--)
{
for (int i = 0; i < rows; i++)
{
x[i, k] = 0.0;
}
x[k, k] = 1.0;
for (int j = k; j < cols; j++)
{
if (qr[k, k] != 0)
{
double s = 0.0;
for (int i = k; i < rows; i++)
{
s += qr[i, k] * x[i, j];
}
s = -s / qr[k, k];
for (int i = k; i < rows; i++)
{
x[i, j] += s * qr[i, k];
}
}
}
}
return x;
}
}
/// Returns the diagonal of R.
public double[] Diagonal
{
get { return Rdiag; }
}
/// Least squares solution of A * X = I
public double[,] Inverse()
{
if (!this.FullRank)
throw new InvalidOperationException("Matrix is rank deficient.");
// Copy right hand side
int m = qr.GetLength(0);
int n = qr.GetLength(1);
double[,] X = new double[m, m];
// Compute Y = transpose(Q)
for (int k = n - 1; k >= 0; k--)
{
for (int i = 0; i < m; i++)
X[k, i] = 0.0;
X[k, k] = 1.0;
for (int j = k; j < n; j++)
{
if (qr[k, k] != 0)
{
double s = 0.0;
for (int i = k; i < m; i++)
s += qr[i, k] * X[j, i];
s = -s / qr[k, k];
for (int i = k; i < m; i++)
X[j, i] += s * qr[i, k];
}
}
}
// Solve R*X = Y;
for (int k = n - 1; k >= 0; k--)
{
for (int j = 0; j < m; j++)
X[k, j] /= Rdiag[k];
for (int i = 0; i < k; i++)
for (int j = 0; j < m; j++)
X[i, j] -= X[k, j] * qr[i, k];
}
return X;
}
}
}