123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932 |
- namespace VisualMath.Accord.Math.Decompositions
- {
- using System;
- using VisualMath.Accord.Math;
- /// <summary>
- /// Determines the eigenvalues and eigenvectors of a real square matrix.
- /// </summary>
- /// <remarks>
- /// <para>
- /// In the mathematical discipline of linear algebra, eigendecomposition
- /// or sometimes spectral decomposition is the factorization of a matrix
- /// into a canonical form, whereby the matrix is represented in terms of
- /// its eigenvalues and eigenvectors.</para>
- /// <para>
- /// If <c>A</c> is symmetric, then <c>A = V * D * V'</c> and <c>A = V * V'</c>
- /// where the eigenvalue matrix <c>D</c> is diagonal and the eigenvector matrix <c>V</c> is orthogonal.
- /// If <c>A</c> is not symmetric, the eigenvalue matrix <c>D</c> is block diagonal
- /// with the real eigenvalues in 1-by-1 blocks and any complex eigenvalues,
- /// <c>lambda + i*mu</c>, in 2-by-2 blocks, <c>[lambda, mu; -mu, lambda]</c>.
- /// The columns of <c>V</c> represent the eigenvectors in the sense that <c>A * V = V * D</c>.
- /// The matrix V may be badly conditioned, or even singular, so the validity of the equation
- /// <c>A = V * D * inverse(V)</c> depends upon the condition of <c>V</c>.
- /// </para>
- /// </remarks>
- public sealed class EigenvalueDecomposition
- {
- private int n; // matrix dimension
- private double[] d, e; // storage of eigenvalues.
- private double[,] V; // storage of eigenvectors.
- private double[,] H; // storage of nonsymmetric Hessenberg form.
- private double[] ort; // storage for nonsymmetric algorithm.
- private double cdivr, cdivi;
- private bool symmetric;
- /// <summary>Construct an eigenvalue decomposition.</summary>
- public EigenvalueDecomposition(double[,] value)
- : this(value, value.IsSymmetric())
- {
- }
- /// <summary>Construct an eigenvalue decomposition.</summary>
- public EigenvalueDecomposition(double[,] value, bool assumeSymmetric)
- {
- if (value == null)
- {
- throw new ArgumentNullException("value", "Matrix cannot be null.");
- }
- if (value.GetLength(0) != value.GetLength(1))
- {
- throw new ArgumentException("Matrix is not a square matrix.", "value");
- }
- n = value.GetLength(1);
- V = new double[n, n];
- d = new double[n];
- e = new double[n];
- this.symmetric = assumeSymmetric;
- if (this.symmetric)
- {
- for (int i = 0; i < n; i++)
- for (int j = 0; j < n; j++)
- V[i, j] = value[i, j];
- // Tridiagonalize.
- this.tred2();
- // Diagonalize.
- this.tql2();
- }
- else
- {
- H = new double[n, n];
- ort = new double[n];
- for (int j = 0; j < n; j++)
- for (int i = 0; i < n; i++)
- H[i, j] = value[i, j];
- // Reduce to Hessenberg form.
- this.orthes();
- // Reduce Hessenberg to real Schur form.
- this.hqr2();
- }
- }
- private void tred2()
- {
- // Symmetric Householder reduction to tridiagonal form.
- // This is derived from the Algol procedures tred2 by Bowdler, Martin, Reinsch, and Wilkinson,
- // Handbook for Auto. Comp., Vol.ii-Linear Algebra, and the corresponding Fortran subroutine in EISPACK.
- for (int j = 0; j < n; j++)
- d[j] = V[n - 1, j];
- // Householder reduction to tridiagonal form.
- for (int i = n - 1; i > 0; i--)
- {
- // Scale to avoid under/overflow.
- double scale = 0.0;
- double h = 0.0;
- for (int k = 0; k < i; k++)
- scale = scale + System.Math.Abs(d[k]);
- if (scale == 0.0)
- {
- e[i] = d[i - 1];
- for (int j = 0; j < i; j++)
- {
- d[j] = V[i - 1, j];
- V[i, j] = 0.0;
- V[j, i] = 0.0;
- }
- }
- else
- {
- // Generate Householder vector.
- for (int k = 0; k < i; k++)
- {
- d[k] /= scale;
- h += d[k] * d[k];
- }
- double f = d[i - 1];
- double g = System.Math.Sqrt(h);
- if (f > 0) g = -g;
- e[i] = scale * g;
- h = h - f * g;
- d[i - 1] = f - g;
- for (int j = 0; j < i; j++)
- e[j] = 0.0;
- // Apply similarity transformation to remaining columns.
- for (int j = 0; j < i; j++)
- {
- f = d[j];
- V[j, i] = f;
- g = e[j] + V[j, j] * f;
- for (int k = j + 1; k <= i - 1; k++)
- {
- g += V[k, j] * d[k];
- e[k] += V[k, j] * f;
- }
- e[j] = g;
- }
- f = 0.0;
- for (int j = 0; j < i; j++)
- {
- e[j] /= h;
- f += e[j] * d[j];
- }
- double hh = f / (h + h);
- for (int j = 0; j < i; j++)
- e[j] -= hh * d[j];
- for (int j = 0; j < i; j++)
- {
- f = d[j];
- g = e[j];
- for (int k = j; k <= i - 1; k++)
- V[k, j] -= (f * e[k] + g * d[k]);
- d[j] = V[i - 1, j];
- V[i, j] = 0.0;
- }
- }
- d[i] = h;
- }
- // Accumulate transformations.
- for (int i = 0; i < n - 1; i++)
- {
- V[n - 1, i] = V[i, i];
- V[i, i] = 1.0;
- double h = d[i + 1];
- if (h != 0.0)
- {
- for (int k = 0; k <= i; k++)
- d[k] = V[k, i + 1] / h;
- for (int j = 0; j <= i; j++)
- {
- double g = 0.0;
- for (int k = 0; k <= i; k++)
- g += V[k, i + 1] * V[k, j];
- for (int k = 0; k <= i; k++)
- V[k, j] -= g * d[k];
- }
- }
- for (int k = 0; k <= i; k++)
- V[k, i + 1] = 0.0;
- }
- for (int j = 0; j < n; j++)
- {
- d[j] = V[n - 1, j];
- V[n - 1, j] = 0.0;
- }
- V[n - 1, n - 1] = 1.0;
- e[0] = 0.0;
- }
- private void tql2()
- {
- // Symmetric tridiagonal QL algorithm.
- // This is derived from the Algol procedures tql2, by Bowdler, Martin, Reinsch, and Wilkinson,
- // Handbook for Auto. Comp., Vol.ii-Linear Algebra, and the corresponding Fortran subroutine in EISPACK.
- for (int i = 1; i < n; i++)
- e[i - 1] = e[i];
- e[n - 1] = 0.0;
- double f = 0.0;
- double tst1 = 0.0;
- double eps = System.Math.Pow(2.0, -52.0);
- for (int l = 0; l < n; l++)
- {
- // Find small subdiagonal element.
- tst1 = System.Math.Max(tst1, System.Math.Abs(d[l]) + System.Math.Abs(e[l]));
- int m = l;
- while (m < n)
- {
- if (System.Math.Abs(e[m]) <= eps * tst1)
- break;
- m++;
- }
- // If m == l, d[l] is an eigenvalue, otherwise, iterate.
- if (m > l)
- {
- int iter = 0;
- do
- {
- iter = iter + 1; // (Could check iteration count here.)
- // Compute implicit shift
- double g = d[l];
- double p = (d[l + 1] - g) / (2.0 * e[l]);
- double r = Accord.Math.Tools.Hypotenuse(p, 1.0);
- if (p < 0)
- {
- r = -r;
- }
- d[l] = e[l] / (p + r);
- d[l + 1] = e[l] * (p + r);
- double dl1 = d[l + 1];
- double h = g - d[l];
- for (int i = l + 2; i < n; i++)
- {
- d[i] -= h;
- }
- f = f + h;
- // Implicit QL transformation.
- p = d[m];
- double c = 1.0;
- double c2 = c;
- double c3 = c;
- double el1 = e[l + 1];
- double s = 0.0;
- double s2 = 0.0;
- for (int i = m - 1; i >= l; i--)
- {
- c3 = c2;
- c2 = c;
- s2 = s;
- g = c * e[i];
- h = c * p;
- r = Accord.Math.Tools.Hypotenuse(p, e[i]);
- e[i + 1] = s * r;
- s = e[i] / r;
- c = p / r;
- p = c * d[i] - s * g;
- d[i + 1] = h + s * (c * g + s * d[i]);
- // Accumulate transformation.
- for (int k = 0; k < n; k++)
- {
- h = V[k, i + 1];
- V[k, i + 1] = s * V[k, i] + c * h;
- V[k, i] = c * V[k, i] - s * h;
- }
- }
- p = -s * s2 * c3 * el1 * e[l] / dl1;
- e[l] = s * p;
- d[l] = c * p;
- // Check for convergence.
- }
- while (System.Math.Abs(e[l]) > eps * tst1);
- }
- d[l] = d[l] + f;
- e[l] = 0.0;
- }
- // Sort eigenvalues and corresponding vectors.
- for (int i = 0; i < n - 1; i++)
- {
- int k = i;
- double p = d[i];
- for (int j = i + 1; j < n; j++)
- {
- if (d[j] < p)
- {
- k = j;
- p = d[j];
- }
- }
- if (k != i)
- {
- d[k] = d[i];
- d[i] = p;
- for (int j = 0; j < n; j++)
- {
- p = V[j, i];
- V[j, i] = V[j, k];
- V[j, k] = p;
- }
- }
- }
- }
- private void orthes()
- {
- // Nonsymmetric reduction to Hessenberg form.
- // This is derived from the Algol procedures orthes and ortran, by Martin and Wilkinson,
- // Handbook for Auto. Comp., Vol.ii-Linear Algebra, and the corresponding Fortran subroutines in EISPACK.
- int low = 0;
- int high = n - 1;
- for (int m = low + 1; m <= high - 1; m++)
- {
- // Scale column.
- double scale = 0.0;
- for (int i = m; i <= high; i++)
- scale = scale + System.Math.Abs(H[i, m - 1]);
- if (scale != 0.0)
- {
- // Compute Householder transformation.
- double h = 0.0;
- for (int i = high; i >= m; i--)
- {
- ort[i] = H[i, m - 1] / scale;
- h += ort[i] * ort[i];
- }
- double g = System.Math.Sqrt(h);
- if (ort[m] > 0) g = -g;
- h = h - ort[m] * g;
- ort[m] = ort[m] - g;
- // Apply Householder similarity transformation
- // H = (I - u * u' / h) * H * (I - u * u') / h)
- for (int j = m; j < n; j++)
- {
- double f = 0.0;
- for (int i = high; i >= m; i--)
- f += ort[i] * H[i, j];
- f = f / h;
- for (int i = m; i <= high; i++)
- H[i, j] -= f * ort[i];
- }
- for (int i = 0; i <= high; i++)
- {
- double f = 0.0;
- for (int j = high; j >= m; j--)
- f += ort[j] * H[i, j];
- f = f / h;
- for (int j = m; j <= high; j++)
- H[i, j] -= f * ort[j];
- }
- ort[m] = scale * ort[m];
- H[m, m - 1] = scale * g;
- }
- }
- // Accumulate transformations (Algol's ortran).
- for (int i = 0; i < n; i++)
- for (int j = 0; j < n; j++)
- V[i, j] = (i == j ? 1.0 : 0.0);
- for (int m = high - 1; m >= low + 1; m--)
- {
- if (H[m, m - 1] != 0.0)
- {
- for (int i = m + 1; i <= high; i++)
- ort[i] = H[i, m - 1];
- for (int j = m; j <= high; j++)
- {
- double g = 0.0;
- for (int i = m; i <= high; i++)
- g += ort[i] * V[i, j];
- // Double division avoids possible underflow.
- g = (g / ort[m]) / H[m, m - 1];
- for (int i = m; i <= high; i++)
- V[i, j] += g * ort[i];
- }
- }
- }
- }
- private void cdiv(double xr, double xi, double yr, double yi)
- {
- // Complex scalar division.
- double r;
- double d;
- if (System.Math.Abs(yr) > System.Math.Abs(yi))
- {
- r = yi / yr;
- d = yr + r * yi;
- cdivr = (xr + r * xi) / d;
- cdivi = (xi - r * xr) / d;
- }
- else
- {
- r = yr / yi;
- d = yi + r * yr;
- cdivr = (r * xr + xi) / d;
- cdivi = (r * xi - xr) / d;
- }
- }
- private void hqr2()
- {
- // Nonsymmetric reduction from Hessenberg to real Schur form.
- // This is derived from the Algol procedure hqr2, by Martin and Wilkinson, Handbook for Auto. Comp.,
- // Vol.ii-Linear Algebra, and the corresponding Fortran subroutine in EISPACK.
- int nn = this.n;
- int n = nn - 1;
- int low = 0;
- int high = nn - 1;
- double eps = System.Math.Pow(2.0, -52.0);
- double exshift = 0.0;
- double p = 0;
- double q = 0;
- double r = 0;
- double s = 0;
- double z = 0;
- double t;
- double w;
- double x;
- double y;
- // Store roots isolated by balanc and compute matrix norm
- double norm = 0.0;
- for (int i = 0; i < nn; i++)
- {
- if (i < low | i > high)
- {
- d[i] = H[i, i];
- e[i] = 0.0;
- }
- for (int j = System.Math.Max(i - 1, 0); j < nn; j++)
- norm = norm + System.Math.Abs(H[i, j]);
- }
- // Outer loop over eigenvalue index
- int iter = 0;
- while (n >= low)
- {
- // Look for single small sub-diagonal element
- int l = n;
- while (l > low)
- {
- s = System.Math.Abs(H[l - 1, l - 1]) + System.Math.Abs(H[l, l]);
- if (s == 0.0) s = norm;
- if (System.Math.Abs(H[l, l - 1]) < eps * s)
- break;
- l--;
- }
- // Check for convergence
- if (l == n)
- {
- // One root found
- H[n, n] = H[n, n] + exshift;
- d[n] = H[n, n];
- e[n] = 0.0;
- n--;
- iter = 0;
- }
- else if (l == n - 1)
- {
- // Two roots found
- w = H[n, n - 1] * H[n - 1, n];
- p = (H[n - 1, n - 1] - H[n, n]) / 2.0;
- q = p * p + w;
- z = System.Math.Sqrt(System.Math.Abs(q));
- H[n, n] = H[n, n] + exshift;
- H[n - 1, n - 1] = H[n - 1, n - 1] + exshift;
- x = H[n, n];
- if (q >= 0)
- {
- // Real pair
- z = (p >= 0) ? (p + z) : (p - z);
- d[n - 1] = x + z;
- d[n] = d[n - 1];
- if (z != 0.0)
- d[n] = x - w / z;
- e[n - 1] = 0.0;
- e[n] = 0.0;
- x = H[n, n - 1];
- s = System.Math.Abs(x) + System.Math.Abs(z);
- p = x / s;
- q = z / s;
- r = System.Math.Sqrt(p * p + q * q);
- p = p / r;
- q = q / r;
- // Row modification
- for (int j = n - 1; j < nn; j++)
- {
- z = H[n - 1, j];
- H[n - 1, j] = q * z + p * H[n, j];
- H[n, j] = q * H[n, j] - p * z;
- }
- // Column modification
- for (int i = 0; i <= n; i++)
- {
- z = H[i, n - 1];
- H[i, n - 1] = q * z + p * H[i, n];
- H[i, n] = q * H[i, n] - p * z;
- }
- // Accumulate transformations
- for (int i = low; i <= high; i++)
- {
- z = V[i, n - 1];
- V[i, n - 1] = q * z + p * V[i, n];
- V[i, n] = q * V[i, n] - p * z;
- }
- }
- else
- {
- // Complex pair
- d[n - 1] = x + p;
- d[n] = x + p;
- e[n - 1] = z;
- e[n] = -z;
- }
- n = n - 2;
- iter = 0;
- }
- else
- {
- // No convergence yet
- // Form shift
- x = H[n, n];
- y = 0.0;
- w = 0.0;
- if (l < n)
- {
- y = H[n - 1, n - 1];
- w = H[n, n - 1] * H[n - 1, n];
- }
- // Wilkinson's original ad hoc shift
- if (iter == 10)
- {
- exshift += x;
- for (int i = low; i <= n; i++)
- H[i, i] -= x;
- s = System.Math.Abs(H[n, n - 1]) + System.Math.Abs(H[n - 1, n - 2]);
- x = y = 0.75 * s;
- w = -0.4375 * s * s;
- }
- // MATLAB's new ad hoc shift
- if (iter == 30)
- {
- s = (y - x) / 2.0;
- s = s * s + w;
- if (s > 0)
- {
- s = System.Math.Sqrt(s);
- if (y < x) s = -s;
- s = x - w / ((y - x) / 2.0 + s);
- for (int i = low; i <= n; i++)
- H[i, i] -= s;
- exshift += s;
- x = y = w = 0.964;
- }
- }
- iter = iter + 1;
- // Look for two consecutive small sub-diagonal elements
- int m = n - 2;
- while (m >= l)
- {
- z = H[m, m];
- r = x - z;
- s = y - z;
- p = (r * s - w) / H[m + 1, m] + H[m, m + 1];
- q = H[m + 1, m + 1] - z - r - s;
- r = H[m + 2, m + 1];
- s = System.Math.Abs(p) + System.Math.Abs(q) + System.Math.Abs(r);
- p = p / s;
- q = q / s;
- r = r / s;
- if (m == l)
- break;
- if (System.Math.Abs(H[m, m - 1]) * (System.Math.Abs(q) + System.Math.Abs(r)) < eps * (System.Math.Abs(p) * (System.Math.Abs(H[m - 1, m - 1]) + System.Math.Abs(z) + System.Math.Abs(H[m + 1, m + 1]))))
- break;
- m--;
- }
- for (int i = m + 2; i <= n; i++)
- {
- H[i, i - 2] = 0.0;
- if (i > m + 2)
- H[i, i - 3] = 0.0;
- }
- // Double QR step involving rows l:n and columns m:n
- for (int k = m; k <= n - 1; k++)
- {
- bool notlast = (k != n - 1);
- if (k != m)
- {
- p = H[k, k - 1];
- q = H[k + 1, k - 1];
- r = (notlast ? H[k + 2, k - 1] : 0.0);
- x = System.Math.Abs(p) + System.Math.Abs(q) + System.Math.Abs(r);
- if (x != 0.0)
- {
- p = p / x;
- q = q / x;
- r = r / x;
- }
- }
- if (x == 0.0) break;
- s = System.Math.Sqrt(p * p + q * q + r * r);
- if (p < 0) s = -s;
- if (s != 0)
- {
- if (k != m)
- H[k, k - 1] = -s * x;
- else
- if (l != m)
- H[k, k - 1] = -H[k, k - 1];
- p = p + s;
- x = p / s;
- y = q / s;
- z = r / s;
- q = q / p;
- r = r / p;
- // Row modification
- for (int j = k; j < nn; j++)
- {
- p = H[k, j] + q * H[k + 1, j];
- if (notlast)
- {
- p = p + r * H[k + 2, j];
- H[k + 2, j] = H[k + 2, j] - p * z;
- }
- H[k, j] = H[k, j] - p * x;
- H[k + 1, j] = H[k + 1, j] - p * y;
- }
- // Column modification
- for (int i = 0; i <= System.Math.Min(n, k + 3); i++)
- {
- p = x * H[i, k] + y * H[i, k + 1];
- if (notlast)
- {
- p = p + z * H[i, k + 2];
- H[i, k + 2] = H[i, k + 2] - p * r;
- }
- H[i, k] = H[i, k] - p;
- H[i, k + 1] = H[i, k + 1] - p * q;
- }
- // Accumulate transformations
- for (int i = low; i <= high; i++)
- {
- p = x * V[i, k] + y * V[i, k + 1];
- if (notlast)
- {
- p = p + z * V[i, k + 2];
- V[i, k + 2] = V[i, k + 2] - p * r;
- }
- V[i, k] = V[i, k] - p;
- V[i, k + 1] = V[i, k + 1] - p * q;
- }
- }
- }
- }
- }
- // Backsubstitute to find vectors of upper triangular form
- if (norm == 0.0)
- {
- return;
- }
- for (n = nn - 1; n >= 0; n--)
- {
- p = d[n];
- q = e[n];
- // Real vector
- if (q == 0)
- {
- int l = n;
- H[n, n] = 1.0;
- for (int i = n - 1; i >= 0; i--)
- {
- w = H[i, i] - p;
- r = 0.0;
- for (int j = l; j <= n; j++)
- r = r + H[i, j] * H[j, n];
- if (e[i] < 0.0)
- {
- z = w;
- s = r;
- }
- else
- {
- l = i;
- if (e[i] == 0.0)
- {
- H[i, n] = (w != 0.0) ? (-r / w) : (-r / (eps * norm));
- }
- else
- {
- // Solve real equations
- x = H[i, i + 1];
- y = H[i + 1, i];
- q = (d[i] - p) * (d[i] - p) + e[i] * e[i];
- t = (x * s - z * r) / q;
- H[i, n] = t;
- H[i + 1, n] = (System.Math.Abs(x) > System.Math.Abs(z)) ? ((-r - w * t) / x) : ((-s - y * t) / z);
- }
- // Overflow control
- t = System.Math.Abs(H[i, n]);
- if ((eps * t) * t > 1)
- for (int j = i; j <= n; j++)
- H[j, n] = H[j, n] / t;
- }
- }
- }
- else if (q < 0)
- {
- // Complex vector
- int l = n - 1;
- // Last vector component imaginary so matrix is triangular
- if (System.Math.Abs(H[n, n - 1]) > System.Math.Abs(H[n - 1, n]))
- {
- H[n - 1, n - 1] = q / H[n, n - 1];
- H[n - 1, n] = -(H[n, n] - p) / H[n, n - 1];
- }
- else
- {
- cdiv(0.0, -H[n - 1, n], H[n - 1, n - 1] - p, q);
- H[n - 1, n - 1] = cdivr;
- H[n - 1, n] = cdivi;
- }
- H[n, n - 1] = 0.0;
- H[n, n] = 1.0;
- for (int i = n - 2; i >= 0; i--)
- {
- double ra, sa, vr, vi;
- ra = 0.0;
- sa = 0.0;
- for (int j = l; j <= n; j++)
- {
- ra = ra + H[i, j] * H[j, n - 1];
- sa = sa + H[i, j] * H[j, n];
- }
- w = H[i, i] - p;
- if (e[i] < 0.0)
- {
- z = w;
- r = ra;
- s = sa;
- }
- else
- {
- l = i;
- if (e[i] == 0)
- {
- cdiv(-ra, -sa, w, q);
- H[i, n - 1] = cdivr;
- H[i, n] = cdivi;
- }
- else
- {
- // Solve complex equations
- x = H[i, i + 1];
- y = H[i + 1, i];
- vr = (d[i] - p) * (d[i] - p) + e[i] * e[i] - q * q;
- vi = (d[i] - p) * 2.0 * q;
- if (vr == 0.0 & vi == 0.0)
- vr = eps * norm * (System.Math.Abs(w) + System.Math.Abs(q) + System.Math.Abs(x) + System.Math.Abs(y) + System.Math.Abs(z));
- cdiv(x * r - z * ra + q * sa, x * s - z * sa - q * ra, vr, vi);
- H[i, n - 1] = cdivr;
- H[i, n] = cdivi;
- if (System.Math.Abs(x) > (System.Math.Abs(z) + System.Math.Abs(q)))
- {
- H[i + 1, n - 1] = (-ra - w * H[i, n - 1] + q * H[i, n]) / x;
- H[i + 1, n] = (-sa - w * H[i, n] - q * H[i, n - 1]) / x;
- }
- else
- {
- cdiv(-r - y * H[i, n - 1], -s - y * H[i, n], z, q);
- H[i + 1, n - 1] = cdivr;
- H[i + 1, n] = cdivi;
- }
- }
- // Overflow control
- t = System.Math.Max(System.Math.Abs(H[i, n - 1]), System.Math.Abs(H[i, n]));
- if ((eps * t) * t > 1)
- for (int j = i; j <= n; j++)
- {
- H[j, n - 1] = H[j, n - 1] / t;
- H[j, n] = H[j, n] / t;
- }
- }
- }
- }
- }
- // Vectors of isolated roots
- for (int i = 0; i < nn; i++)
- if (i < low | i > high)
- for (int j = i; j < nn; j++)
- V[i, j] = H[i, j];
- // Back transformation to get eigenvectors of original matrix
- for (int j = nn - 1; j >= low; j--)
- for (int i = low; i <= high; i++)
- {
- z = 0.0;
- for (int k = low; k <= System.Math.Min(j, high); k++)
- z = z + V[i, k] * H[k, j];
- V[i, j] = z;
- }
- }
- /// <summary>Returns the real parts of the eigenvalues.</summary>
- public double[] RealEigenvalues
- {
- get { return this.d; }
- }
- /// <summary>Returns the imaginary parts of the eigenvalues.</summary>
- public double[] ImaginaryEigenvalues
- {
- get { return this.e; }
- }
- /// <summary>Returns the eigenvector matrix.</summary>
- public double[,] Eigenvectors
- {
- get { return this.V; }
- }
- /// <summary>Returns the block diagonal eigenvalue matrix.</summary>
- public double[,] DiagonalMatrix
- {
- get
- {
- double[,] x = new double[n, n];
- for (int i = 0; i < n; i++)
- {
- for (int j = 0; j < n; j++)
- x[i, j] = 0.0;
- x[i, i] = d[i];
- if (e[i] > 0)
- {
- x[i, i + 1] = e[i];
- }
- else if (e[i] < 0)
- {
- x[i, i - 1] = e[i];
- }
- }
- return x;
- }
- }
- }
- }
|